In this PhD some key computational and algorithmic aspects of the Combined Finite Discrete Element Method (FDEM) are critically evaluated and either alternative novel or improved solutions have been proposed, developed and tested. In particular, two novel algorithms for contact detection have been developed. Also a comparative study of different contact detection algorithms has been made. The scope of this work also included large and grand scale FDEM problems that require intensive use of CPU; thus, novel parallelization solutions for grand scale FDEM problems have been developed and implemented using the MPI (Message Passing Interface) based domain decomposition. In this context a special attention is paid to the rapidly developing multi-core desktop architectures. The proposed novel solutions have been intensively validated and verified and demonstrated using various problems from literature.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:667360 |
Date | January 2014 |
Creators | Schiava D'Albano, Guillermo Gonzalo |
Publisher | Queen Mary, University of London |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://qmro.qmul.ac.uk/xmlui/handle/123456789/9071 |
Page generated in 0.0021 seconds