Return to search

Representations From Group Actions On Words And Matrices

We provide a combinatorial interpretation of the frequency of any irreducible representation of Sn in representations of Sn arising from group actions on words. Recognizing that representations arising from group actions naturally split across orbits yields combinatorial interpretations of the irreducible decompositions of representations from similar group actions. The generalization from group actions on words to group actions on matrices gives rise to representations that prove to be much less transparent. We share the progress made thus far on the open problem of determining the irreducible decomposition of certain representations of Sm × Sn arising from group actions on matrices.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-4375
Date01 June 2023
CreatorsAnderson, Joel T
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.0018 seconds