Consider a probability distribution on the permutations of n elements. If the probability of each permutation is proportional to θK, where K is the number of cycles in the permutation, then we say that the distribution generates a θ-biased random permutation. A random permutation is a special θ-biased random permutation with θ = 1. The mth moment of the rth longest cycle of a random permutation is Θ(nm), regardless of r and θ. The joint moments are derived, and it is shown that the longest cycles of a permutation can either be positively or negatively correlated, depending on θ. The mth moments of the rth shortest cycle of a random permutation is Θ(nm−θ/(ln n)r−1) when θ < m, Θ((ln n)r) when θ = m, and Θ(1) when θ > m. The exponent of cycle lengths at the 100qth percentile goes to q with zero variance. The exponent of the expected cycle lengths at the 100qth percentile is at least q due to the Jensen’s inequality, and the exact value is derived.
Identifer | oai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:hmc_theses-1054 |
Date | 01 January 2014 |
Creators | Shi, Tongjia |
Publisher | Scholarship @ Claremont |
Source Sets | Claremont Colleges |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | HMC Senior Theses |
Rights | © 2014 Tongjia Shi |
Page generated in 0.0018 seconds