This thesis deals with wavelet analysis of sleep electroencephalogram to sleep stages scoring. The theoretical part of the thesis deals with the theory of EEG signal creation and analysis. The polysomnography (PSG) is also described. This is the method for simultaneous measuring the different electrical signals; main of them are electroencephalogram (EEG), electromyogram (EMG) and electrooculogram (EOG). This method is used to diagnose sleep failure. Therefore sleep, sleep stages and sleep disorders are also described in the present study. In practical part, some results of application of discrete wavelet transform (DWT) for decomposing the sleep EEGs using mother wavelet Daubechies 2 „db2“ are shown and the level of the seven. The classification of the resulting data was used feedforward neural network with backpropagation errors.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:219944 |
Date | January 2013 |
Creators | Holdova, Kamila |
Contributors | Smital, Lukáš, Ronzhina, Marina |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0015 seconds