Return to search

The SBLPO framework: A practical framework for performing simulation-based optimization integrated facility layout studies : A case study at Sandvik Mining and Rock Solutions manufacturing facility in Alachua, Florida

This master thesis presents a practical framework for integrating Simulation-Based Optimization into facility layout studies. While various methodologies exist for improving facility layouts and the utilization of Simulation-based Optimization, there is a gap in practical frameworks offering a systematic approach to combine these methods effectively. Existing frameworks lack specificity, require substantial prior knowledge, and offer limited insight into the methodologies employed. Consequently, there is a need for a comprehensive, step-by-step framework accessible to a broader range of practitioners. The proposed framework addresses this gap by providing a practical step-by-step approach that guides practitioners through a Simulation-Based Optimization integrated facility layout study. This framework facilitates the development of alternative layouts and system configurations using trusted methods. To assess the proposed framework, a case study was conducted at a manufacturing facility with the purpose of enhancing the production throughput. The case study followed the steps outlined in the framework in a real-world scenario, which provided valuable insights into the practicality and usefulness of the framework. The framework's effectiveness hinges on careful execution of each step, particularly given its front-loaded nature. Neglecting any step could lead to inaccuracies in subsequent stages, undermining the overall validity of the study. Adequate time allocation, especially in data collection and simulation model development, is critical to ensuring robust results. While the framework's applicability has been demonstrated in a high-mix low-volume production environment, its broader effectiveness across different settings remains to be explored. Nonetheless, the framework's intuitive flow and reliance on established methodologies enhance its usability and potential to improve production system throughput. Ultimately, the study contributes a tangible solution to the research question, offering practitioners a valuable tool for streamlining production.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-107306
Date January 2024
CreatorsLannerås, Jonathan, Darner, Tobias
PublisherLuleå tekniska universitet, Institutionen för ekonomi, teknik, konst och samhälle
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds