Return to search

Segmentering av medicinska bilder med inspiration från en quantum walk algoritm / Segmentation of Medical Images Inspired by a Quantum Walk Algorithm

För närvarande utforskas quantum walk som en potentiell metod för att analysera medicinska bilder. Med inspiration från Gradys random walk-algoritm för bildbehandling har vi utvecklat en metod som bygger på de kvantmekaniska fördelar som quantum walk innehar för att detektera och segmentera medicinska bilder. Vidare har de segmenterade bilderna utvärderats utifrån klinisk relevans. Teoretiskt sett kan quantum walk-algoritmer erbjuda en mer effektiv metod för bildanalys inom medicin jämfört med traditionella metoder för bildsegmentering som exempelvis klassisk random walk, som inte bygger på kvantmekanik. Inom området finns omfattande potential för utveckling, och det är av yttersta vikt att fortsätta utforska och förbättra metoder. För närvarande kan det konstateras att det är en lång väg att vandra innan detta är något som kan appliceras i en klinisk miljö. / Currently, quantum walk is being explored as a potential method for analyzing medical images. Taking inspiration from Grady's random walk algorithm for image processing, we have developed an approach that leverages the quantum mechanical advantages inherent in quantum walk to detect and segment medical images. Furthermore, the segmented images have been evaluated in terms of clinical relevance. Theoretically, quantum walk algorithms have the potential to offer a more efficient method for medical image analysis compared to traditional methods of image segmentation, such as classical random walk, which do not rely on quantum mechanics. Within this field, there is significant potential for development, and it is of utmost importance to continue exploring and refining these methods. However, it should be noted that there is a long way to go before this becomes something that can be applied in a clinical environment.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-335209
Date January 2023
CreatorsAltuni, Bestun, Aman Ali, Jasin
PublisherKTH, Medicinteknik och hälsosystem
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-CBH-GRU ; 2023:124

Page generated in 0.0029 seconds