En la industria minera, las simulaciones geoestadísticas se utilizan para cuantificar la incertidumbre en las leyes de mineral y predecir los recursos recuperables sobre una determinada ley de corte. Para estos efectos, uno de los modelos más utilizados es el modelo multigaussiano, el cual permite simular las leyes de un material de interés a soporte puntual, para luego rebloquear los valores puntuales y construir un modelo de leyes a tamaño de bloques.
En este trabajo, se propone estudiar el modelo gaussiano discreto, que permite realizar directamente las simulaciones a tamaño de bloques sin pasar por simulaciones puntuales, con los beneficios en tiempos de cálculo que esto significa, pero también con algunas aproximaciones en las que incurre con respecto al modelo multigaussiano.
La primera parte del trabajo apunta a establecer las condiciones bajo las cuales el modelo gaussiano discreto entrega resultados similares al modelo multigaussiano. Así, se realiza un estudio de sensibilidad al variograma, que modela la variabilidad espacial de la ley, así como al tamaño de los bloques a utilizar en el modelo, a la cantidad de datos condicionantes y a la asimetría que presente el histograma de estos.
En la segunda parte del trabajo, se aplica el modelo multigaussiano y el gaussiano discreto a dos bases de datos de leyes reales con distintas características, con el objetivo de evaluar en la práctica los resultados de estos modelos. En particular, se compara las estimaciones de recursos mediante curvas tonelaje-ley y las medidas de incertidumbre asociadas a cada estimación.
Los resultados obtenidos indican que, con una base de datos con un histograma de asimetría leve o moderada, el modelo gaussiano discreto aproxima de buena forma al modelo multigaussiano, observándose distribuciones de leyes simuladas y curvas tonelaje-ley prácticamente idénticas, además de medidas de incertidumbre similares. Sin embargo, al aplicar el modelo gaussiano discreto en una base de datos con un histograma de asimetría considerable, la similitud de resultados con el modelo multigaussiano se pierde: se observa diferencias importantes en la estimación de recursos recuperables, especialmente en las leyes medias obtenidas para distintas leyes de corte, y en las medidas de incertidumbre obtenidas con cada modelo.
Las conclusiones de este trabajo indican que aplicar el modelo gaussiano discreto a datos con un histograma muy asimétrico no es recomendable. En estos casos, el modelo gaussiano discreto tiende a sobrestimar la cola de altas leyes en el histograma de frecuencias de leyes simuladas, y además presenta diferencias importantes en las frecuencias de leyes menores, todo esto en comparación al modelo multigaussiano. Sin embargo, con una base de datos de histograma con asimetría leve o moderada, el modelo gaussiano discreto es perfectamente aplicable, además de requerir tiempos de cálculo considerablemente menores.
Identifer | oai:union.ndltd.org:UCHILE/oai:repositorio.uchile.cl:2250/103372 |
Date | January 2009 |
Creators | Zúñiga Ramírez, Rodrigo Eduardo |
Contributors | Emery, Xavier, Facultad de Ciencias Físicas y Matemáticas, Departamento de Ingeniería en Minas, Ortiz Cabrera, Julián, Magri Varela, Eduardo |
Publisher | Universidad de Chile, Programa Cybertesis |
Source Sets | Universidad de Chile |
Language | Spanish |
Detected Language | Spanish |
Type | Tesis |
Rights | Zúñiga Ramírez, Rodrigo Eduardo |
Page generated in 0.0018 seconds