Return to search

Swimming pool water treatment with conventional and alternative water treatment technologies

To mitigate microbial activity in swimming pools and to assure hygienic safety for bathers, pool systems have a re-circulating water system ensuring continuous water treatment and disinfection by chlorination. A major drawback associated with the use of chlorine as disinfectant is its potential to react with organic matter (OM) present in pool water to form potentially harmful disinfection by-products (DBP).

In this thesis, the treatment performance of different combinations of conventional and novel treatment processes was compared using a pilot scale swimming pool model that was operated under reproducible and fully controlled conditions. The quality of the pool water was determined in means of volatile DBPs and the concentration and composition of dissolved organic carbon (DOC).

Further, overall apparent reaction rates for the removal of monochloramine (MCA), a DBP found in pool water, in granular activated carbon (GAC) beds were determined using a fixed-bed reactor system operated under conditions typical for swimming pool water treatment. The reaction rates as well as the type of reaction products formed were correlated with physico-chemical properties of the tested GACs.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-233929
Date12 March 2018
CreatorsSkibinski, Bertram
ContributorsTechnische Universität Dresden, Fakultät Umweltwissenschaften, Prof. Dr. Eckhard Worch, Prof. Dr. Martin Jekel, Prof. Dr. Wolfgang Uhl
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0029 seconds