The commercial buildings sector in the United States used 18 percent (17.93 Quads) of the U.S. primary energy in 2006. Office buildings are the largest single energy consumption category in the commercial buildings sector of the United States with annual energy consumption around 1.1 Quads. Traditional approaches used in commercial building designs are not adequate to save energy in both depth and scale. One of the most effective ways to reduce energy consumption is to improve energy performance of HVAC systems.
High-performance HVAC systems and components, as well as application of renewable energy sources, were surveyed for buildings in hot and humid climates. An analysis of performance and energy saving potential estimation for selected HVAC systems in hot and humid climates was developed based on energy consumption simulation models in DOE-2.1E.
A calibrated energy consumption model of an existing office building located in the hot and humid climate conditions of Texas was developed. Based on this model, the energy saving potential of the building was estimated.
In addition, energy consumption simulation models were developed for a new office building, including simulation of energy saving measures that could be achieved with further improvements of HVAC system above the energy conservation codes requirements. The theoretical minimum energy consumption level for the same office building was estimated for the purpose of evaluating the whole building energy efficiency level. The theoretical minimum energy consumption model of the office building was designed to provide the same level of comfort and services to the building occupants as provided in the actual building simulation model.
Finally, the energy efficiency of the building that satisfies valid energy conservation codes and the building with an improved HVAC system was estimated based on theoretically minimum energy consumption level.
The analysis provided herein can be used for new building practitioners and existing building owners to evaluate energy reduction potential and the performance of innovative technologies such as dedicated outdoor air system, displacement ventilation, improved cooling system efficiency, air source heat pumps and natural gas heat pumps.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2010-12-8917 |
Date | 2010 December 1900 |
Creators | Tanskyi, Oleksandr |
Contributors | Pate, Michael B., Claridge, David E. |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | thesis, text |
Format | application/pdf |
Page generated in 0.0017 seconds