Return to search

Fast pyrolysis of corn residues for energy production.

Thesis (MScEng)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Increasing oil prices along with the climate change threat have forced governments, society and the energy sector to consider alternative fuels. Biofuel presents itself as a suitable replacement and has received much attention over recent years. Thermochemical conversion processes such as pyrolysis is a topic of interest for conversion of cheap agricultural wastes into clean energy and valuable products. Fast pyrolysis of biomass is one of the promising technologies for converting biomass into liquid fuels and regarded as a promising feedstock to replace petroleum fuels. Corn residues, corn cob and corn stover, are some of the largest agricultural waste types in South Africa amounting to 8 900 thousand metric tonnes annually (1.7% of world corn production) (Nation Master, 2005).
This study looked at the pyrolysis kinetics, the characterisation and quality of by-products from fast pyrolysis of the corn residues and the upgrading of bio-oil. The first objective was to characterise the physical and chemical properties of corn residues in order to determine the suitability of these feedstocks for pyrolytic purposes. Secondly, a study was carried out to obtain the reaction kinetic information and to characterise the behaviour of corn residues during thermal decomposition. The knowledge of biomass pyrolysis kinetics is of importance in the design and optimisation of pyrolytic reactors. Fast pyrolysis experiments were carried out in 2 different reactors: a Lurgi twin screw reactor and a bubbling fluidised bed reactor. The product yields and quality were compared for different types of reactors and biomasses. Finally, a preliminary study on the upgrading of bio-oil to remove the excess water and organics inorder to improve the quality of this liquid fuel was performed.
Corn residues biomass are potential thermochemical feedstocks, with the following properties (carbon 50.2 wt. %, hydrogen 5.9 wt. % and Higher heating value 19.14 MJ/kg) for corn cob and (carbon 48.9 wt. %, hydrogen 6.01 wt. % and Higher heating value 18.06 MJ/kg) for corn stover. Corn cobs and corn stover contained very low amounts of nitrogen (0.41-0.57 wt. %) and sulphur (0.03-0.05 wt. %) compared with coal (nitrogen 0.8-1.9 wt. % and sulphur 0.7-1.2 wt. %), making them emit less sulphur oxides than when burning fossil fuels. The corn residues showed three distinct stages in the thermal decomposition process, with peak temperature of pyrolysis shifting to a higher value as the heating rate increased. The activation energies (E) for corn residues, obtained by the application of an iso-conversional method from thermogravimetric tests were in the range of 220 to 270 kJ/mol. The products obtained from fast pyrolysis of corn residues were bio-oil, biochar, water and gas. Higher bio-oil yields were produced from fast pyrolysis of corn residues in a bubbling fluidised bed reactor (47.8 to 51.2 wt. %, dry ash-free) than in a Lurgi twin screw reactor (35.5 to 37 wt. %, dry ash-free). Corn cobs produced higher bio-oil yields than corn stover in both types of reactors. At the optimised operating temperature of 500-530 °C, higher biochar yields were obtained from corn stover than corn cobs in both types of reactors. There were no major differences in the chemical and physical properties of bio-oil produced from the two types of reactors. The biochar properties showed some variation in heating values, carbon content and ash content for the different biomasses. The fast pyrolysis of corn residues produced energy products, bio-oil (Higher heating value = 18.7-25.3 MJ/kg) and biochar (Higher heating value = 19.8-29.3 MJ/kg) comparable with coal (Higher heating value = 16.2-25.9 MJ/kg). The bio-oils produced had some undesirable properties for its application such as acidic (pH 3.8 to 4.3) and high water content (21.3 to 30.5 wt. %). The bio-oil upgrading method (evaporation) increased the heating value and viscosity by removal of light hydrocarbons and water. The corn residues biochar produced had a BET Brynauer-Emmet-Teller (BET) surface area of 96.7 to 158.8 m2/g making it suitable for upgrading for the manufacture of adsorbents. The gas products from fast pyrolysis were analysed by gas chromatography (GC) as CO2, CO, H2, CH4, C2H4, C2H6, C3H8 and C5+ hydrocarbons. The gases had CO2 and CO of more than 80% (v/V) and low heating values (8.82-8.86 MJ/kg). / AFRIKAANSE OPSOMMING: Die styging in olie pryse asook dreigende klimaatsveranderinge het daartoe gelei dat regerings, die samelewing asook die energie sektor alternatiewe energiebronne oorweeg. Biobrandstof as alternatiewe energiebron het in die afgope paar jaar redelik aftrek gekry. Termochemiese omskakelingsprosesse soos pirolise word oorweeg vir die omskakeling van goedkoop landbou afval na groen energie en waardevolle produkte. Snel piroliese van biomassa is een van die mees belowende tegnologië vir die omskakeling van biomassa na vloeibare brandstof en word tans gereken as ’n belowende kandidaat om petroleum brandstof te vervang. Mielieafval, stronke en strooi vorm ’n reuse deel van die Suid Afrikaanse landbou afval. Ongeveer 8900 duisend metrieke ton afval word jaarliks geproduseer wat optel na ongeveer 1.7% van die wêreld se mielie produksie uitmaak (Nation Master, 2005).
Hierdie studie het gekk na die kinetika van piroliese, die karakterisering en kwaliteit van by-produkte van snel piroliese afkomstig van mielie-afval asook die opgradering van biobrandstof. Die eerste mikpunt was om die fisiese en chemiese karakteristieke van mielie-afval te bepaal om sodoende die geskiktheid van hierdie afval vir die gebruik tydens piroliese te bepaal. Tweendens is ’n kinetiese studie onderneem om reaksie parameters te bepaal asook die gedrag tydens termiese ontbinding waar te neem. Kennis van die piroliese kinetika van biomassa is van belang juis tydens die ontwerp en optimering van piroliese reaktore. Snel piroliese ekspermente is uitgevoer met behulp van twee verskillende reaktore: ’n Lurgi twee skroef reaktor en ’n borrelende gefluidiseerde-bed reaktor. Die produk opbrengs en kwaliteit is vergelyk. Eindelik is ’n voorlopige studie oor die opgradering van bio-olie uitgevoer deur te kyk na die verwydering van oortollige water en organiese materiaal om die kwaliteit van hierdie vloeibare brandstof te verbeter.
Biomassa afkomstig van mielie-afval is ’n potensiële termochemiese voerbron met die volgende kenmerke: mielie stronke- (C - 50.21 massa %, H – 5.9 massa %, HHV – 19.14 MJ/kg); mielie strooi – (C – 48.9 massa %, H – 6.01 massa %, HHV – 18.06 MJ/kg). Beide van hierdie materiale bevat lae hoeveelhede N (0.41-0.57 massa %) and S (0.03-0.05 massa %) in vergelyking met steenkool N (0.8-1.9 massa %) and S (0.7-1.2 massa %). Dit beteken dat hieride bronne van biomassa laer konsentrasies van swael oksiedes vrystel in vergelyking met fossielbrandstowwe. Drie kenmerkende stadia is waargeneem tydens die termiese afbraak van mielie-afval, met die temperatuur piek van piroliese wat skuif na ’n hoër temperatuur soos die verhittingswaarde toeneem. Die waargenome aktiveringsenergie (E) van mielie-afval bereken met behulp van die iso-omskakelings metode van TGA toetse was in die bestek: 220 tot 270 kJ/mol.
Die produkte verkry deur Snel Piroliese van mielie-afval was bio-olie, bio-kool en gas. ’n Hoër opbrengs van bio-olie is behaal tydens Snel Piroliese van mielie-afval in die borrelende gefluidiseerde-bed reakctor (47.8 na 51.2 massa %, droog as-vry) in vergelyking met die Lurgi twee skroef reakctor (35.5 na 37 massa %, droog as-vry). Mielie stronke sorg vir ’n hoër opbrengs van bio-olie as mielie strooi in beide reaktore. By die optimum bedryfskondisies is daar in beide reaktor ’n hoër bio-kool opbrengs verkry van mielie stingels teenoor mielie stronke. Geen aansienlike verskille is gevind in die chemise en fisiese kenmerke van van die bio-olie wat geproduseer is in die twee reaktore nie. Daar is wel variasie getoon in die bio-kool kenmerkte van die verskillende Snel Piroliese prosesse. Snel piroliese van mielie-afval lewer energie produkte, bio-olie (HVW = 18.7-25.3MJ/kg) en bio-kool (HVW = 19.8-29.3 MJ/kg) vergelykbaar met steenkool (HVW = 16.2-25.9 MJ/kg). Die bio-olies geproduseer het sommige ongewenste kenmerke getoon byvoorbeeld suurheid (pH 3.8-4.3) asook hoë water inhoud (21.3 – 30.5 massa %). Die metode (indamping) wat gebruik is vir die opgradering van bio-olie het gelei tot die verbetering van die verhittingswaarde asook die toename in viskositeit deur die verwydering van ligte koolwaterstowwe en water. Die mielie-afval bio-kool toon ’n BET (Brunauer-Emmet-Teller) oppervlakte area van 96.7-158.8 m2/g wat dit toepaslik maak as grondstof vir absorbante. The gas geproduseer tydens Snel Piroliese is geanaliseer met behulp van gas chromotografie (GC) as CO2, CO, H2, CH4, C2H4, C2H6, C3H8 and C5+ koolwaterstowwe. Die vlak van CO2 en CO het 80% (v/V) oorskry en met lae verhittingswaardes (8.82-8.86 MJ/kg).

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/17822
Date12 1900
CreatorsDanje, Stephen
ContributorsKnoetze, J. H., Gorgens, J. F., Stellenbosch University. Faculty of Engineering. Dept. of Process Engineering.
PublisherStellenbosch : Stellenbosch University
Source SetsSouth African National ETD Portal
Languageen_ZA
Detected LanguageUnknown
TypeThesis
Format204 p. : ill.
RightsStellenbosch University

Page generated in 0.0027 seconds