Return to search

The effect of electrical input during beef processing on resultant meat quality

Thesis (MScAgric) -- Stellenbosch University, 2009. / ENGLISH ABSTRACT: The two main determinants of post-slaughter processing outcomes are rates of pH and temperature decline.
Muscle pH and temperature interact continuously during rigor development to affect both the muscle
contracture and proteolytic enzyme activity. The pH, however, can be manipulated independently of
temperature by electrical inputs applied to the carcass. Electrical inputs that should be considered range
from electrical stunning to the various forms of electrical immobilisation (EI) and stimulation (ES) that occur
during and after the dressing procedures. EI is used to suppress convulsions that occur after electrical
stunning to ensure operator safety to maintain high throughputs speeds while ES is used to induce rapid
tenderisation, although having other biochemical and biophysical effects on meat.
The objective of the study was to supply information on the effect of different EI and ES treatments,
frequencies and pulse widths on the meat quality of beef. There are very little data on the effect of EI when it
is combined with ES on meat quality. This study used two different EI frequencies (high – 800 Hz; HFI and
low – 15 Hz; LFI) combined with either high (1040 V; HVS) or medium (300 V; MVS) voltage ES to study the
effect of these treatments on meat quality. In the following experiment the EI waveform and ES was
standardised using HFI with MVS with the frequency being changed to either 5, 15 or 50 Hz. Then the pulse
width of the waveform was changed to 0.1, 0.5, 1 and 10 ms to optimise the ES system.
Meat quality measurements were made from the Longisimmus dorsi (LD) and Semimembranosus (SM) after
1, 5 and 9 days of chilled storage at 0 C. The LD (shear force = 94.3±2.2; cooking loss = 26.85±0.29; retail
drip = 0.996±0.037; storage drip = 2.78±0.155; WBC (water binding capacity) = 45.4±0.36) had significantly
lower shear force and higher water binding capacity than the SM (shear force = 103.7±2.5; cooking loss =
34.63±0.25; retail drip = 2.12±0.103; storage drip = 3.63±0.245; WBC = 59.3±0.57). Day of assessment (Day
1 = 122.7±2.9; Day 5 = 87.7±2.2; Day 9 = 81.0±2.4) had a significant effect on tenderness of the LD as shear
force declined with an increase of day of assessment. The LFI HVS (storage drip = 3.30±0.223; shear force
= 102.9±4.5) produced significantly greater drip during storage and shear force values when compared to the
HFI followed by either HVS (storage drip = 2.45±0.261; shear force = 85.2±4.0) or MVS (storage drip =
2.60±0.178; shear force = 94.2±4.2) in the LD, probably attributable to different rates of pH decline post
mortem. LFI HVS (a* = 20.79±0.31; chroma = 22.92) and LFI MVS (a* = 20.24±0.27; chroma = 22.23±0.30)
had a redder and more vivid bloomed colour than HFI HVS (a* = 19.71±0.33; chroma = 21.49±0.37) and HFI
MVS (a* = 20.00±0.27; chroma = 21.98±0.31), while LFI HVS (a* = 15.27±0.40) and HFI MVS (a* = 14.64±0.29) had a redder colour compared to HFI HVS (13.85±0.35) at day 9 for the LD. The oxygen
consumption rate (MTT assay) correlated inversely linear (r = -0.63 and -0.73) with the a* values 24 hrs post
mortem allowing for 3 hrs of bloom.
Stimulation with 15 Hz (0.47±0.040) and 5 Hz (0.41±0.045) had a higher pH decline (ΔpH) during stimulation
than 50 Hz (0.29±0.027). Shear force measurements and cooking loss percentage were obtained from the
LD after 24 hrs of chilled storage at 0 C. There were no difference between the stimulation treatments for
shear force (15 Hz = 121.3±3.3; 5 Hz = 123.8±7.6; 50 Hz =114.8±7.94), while cooking loss was higher in 15
Hz (28.8±0.47) than 50 Hz (25.9±0.71) which correlated (r = 0.43; p = 0.01) with ΔpH.
There were no differences between 10 ms (0.46±0.020), 1 ms (0.43±0.020) and 0.5 ms (0.44±0.019) pulse
widths on the ΔpH while 0.1 ms (0.33±0.020) had a lower decline. Stimulation with a 1 ms (94.6±5.6) pulse
width had the lowest shear force that varied from 10 (111.3±3.8) and 0.1 ms (111.3±5.8). While cooking loss
(0.1 = 25.3±0.48; 0.5 = 26.9±0.67; 1 = 25.9±0.63; 10 = 25.5±0.66) and water-holding capacity (0.1 = 36.1±1.60; 0.5 = 37.3±1.42; 1 = 37.5±1.15; 10 = 36.9±1.45) was not affected in the LD after 24 hrs of chilled
storage at 0 C. Colour measurements on the SM indicated that a 0.1(a* = 19.38±0.50; chroma =
22.70±0.51), 0.5 (a* = 20.89±0.49; chroma = 24.34±0.56) and 10 ms (a* = 19.69±0.46; chroma =
22.98±0.58) pulse width had a deeper red and a more vivid colour than 1 ms (a* = 16.66±0.37; chroma =
19.99±0.32) at day nine of retail display.
In conclusion, HFI improves meat quality when combined with either HVS or MVS and that MVS either
improves (colour stability) or has no adverse effects on meat quality (tenderness and WBC) in relation to
HVS when combined HFI. In addition, it shows that there are alternative electrical parameters to voltage that
can be used to change the pH decline and by changing frequency and pulse width, subtle changes can be
made to an ES system. Since every abattoir is different due to layout, chiller space and cooling regime these
electrical parameters can be modulated to optimise an electrical stimulation system without expensive
modification to the whole system. / AFRIKAANSE OPSOMMING: Die tempo van pH en temperatuur daling is die twee hoof bepalings van na-slag prosseserings uitkomste.
Spier pH en temperatuur het ’n gedurige interaksie tydens rigor ontwikkeling en beïvloed die spier
sametrekking en proteolitiese ensiem aktiwiteit. Die spier pH kan onafhanklik van temperatuur gemanipuleer
word, deur elektriese golfvorms deur die karkas te stuur. Die elektriese golfvorms wat in ag geneem moet
word varieer van elektriese impulse tydens bedwelming tot die verskeie golfvorms van elektriese
immobilisasie (EI) en stimulasie (ES) wat gebruik kan word gedurende en na die slagproses. EI word gebruik
om konvulsies te beheer wat onstaan na elektriese bedwelming om werker veiligheid en hoë deurvloei
tempos te verseker, terwyl ES die verouderings proses versnel, alhoewel dit ander biochemiese en biofisiese
uitwerkings het op vleis.
Die studie het verneem om inligting te verskaf oor die effek van verskillende EI en ES kombinasies,
frekwensie en puls wydtes op die kwaliteit van beesvleis. Daar is baie min inligting van EI in kombinasie met
ES se effek op vleis kwaliteit. Die studie het gebruik gemaak van twee verskillende (EI) frekwensies (hoog –
800 Hz; HFI and laag – 15 Hz; LFI) wat gekombineer is met of hoë (1040 V; HVS) of medium (300 V; MVS)
spanning ES se effek op vleis kwaliteit. In die volgende eksperiment was die EI golfvorm en die ES
gestandardiseer en HFI met MVS was gebruik met die frekwensie wat verander is tussen 5, 15 en 50 Hz.
Daarna was die pulse wydte van die golfvorm verander tussen 0.1, 0.5, 1en 10 ms om die ES sisteem te
optimiseer.
Vleis kwaliteit van die Longisimmus dorsi (LD) en Semimembranosus (SM) spiere was bepaal na 1, 5 en 9
dae van verkoelde storing teen 0°C. Die LD (skeurkrag = 94.3±2.2; kookverlies = 26.85±0.29; kleinhandel
drup verlies = 0.996±0.037; storing drip verlies = 2.78±0.155; WBV (water bindings vermoë) = 45.4±0.36) het
‘n betekenisvolle laer skeurkrag waardes en hoër water bindings vermoë gehad in vergelyking met die SM
(skeurkrag = 103.7±2.5; kookverlies = 34.63±0.25; kleinhandel drupverlies = 2.12±0.103; bergings
drupverlies = 3.63±0.245; WBV = 59.3±0.57). Die dag van assesering (Dag 1 = 122.7±2.9; Dag 5 = 87.7±2.2;
Dag 9 = 81.0±2.4) het ’n betekenisvolle effek gehad op die skeur krag waardes en het afgeneem met ’n
toename in die dag van assesering. LFI HVS (storing drupverlies = 3.30±0.223; skeurkrag = 102.9±4.5) het
betekenisvolle hoër vog verliese gehad tydens verkoelde storing en skeur krag wanneer dit vergelyk word
met HFI gevolg deur of HVS (storing drupverlies = 2.45±0.261; skeurkrag = 85.2±4.0) of MVS (storing
drupverlies = 2.60±0.178; skeurkrag = 94.2±4.2). LFI HVS (a* = 20.79±0.31; chroma = 22.92) en LFI MVS
(a* = 20.24±0.27; chroma = 22.23±0.30) het ‘n helder en dieper rooi kleur gehad in vergelyking met HFI HVS (a* = 19.71±0.33; chroma = 21.49±0.37) en HFI MVS (a* = 20.00±0.27; chroma = 21.98±0.31), terwyl LFI
HVS (a* = 15.27±0.40) en HFI MVS (a* = 14.64±0.29) ’n rooier en helderer kleur as HFI HVS (13.85±0.35)
gehad het in die LD. Die suurstof verbruik tempo (MTT analise) korreleer omgekeerd (r = -0.63 en -0.73) met
die a* waardes 24 hr post mortem na 3 hr van blootstelling van lug.
Stimulasie met 15 (0.47±0.040) en 5 Hz (0.41±0.045) het ’n hoër pH daling (ΔpH) tydens stimulasie as 50 Hz
(0.29±0.027). Skeurkrag waardes en kookverliese is verkry vanaf die LD na 1 dag van verkoelde storing teen
0 C. Daar was geen verskil tussen stimulasie frekwensie se effek of skeurkrag (15 Hz = 121.3±3.3; 5 Hz =
123.8±7.6; 50 Hz =114.8±7.94) nie, terwyl die kookverliese hoër was in die 15 Hz (28.8±0.47) as 50 Hz
(25.9±0.71) behandeling wat gekorreleer (r = 0.43; p = 0.01) het met ΔpH. Daar was geen verskill tussen 10 (0.46±0.020), 1 (0.43±0.020) en 0.5 ms (0.44±0.019) puls wydtes se effek
op ΔpH nie, terwyl 0.1 (0.33±0.020) ms ‘n kleiner afname tot gevolg gehad het. Stimulasie met ‘n 1 ms
(94.6±5.6) puls wydte het die laagste skeurkrag gehad wat verskil het van die 10 (111.3±3.8) and 0.1 ms
(111.3±5.8) puls wydtes, terwyl kookverliese (0.1 = 25.3±0.48; 0.5 = 26.9±0.67; 1 = 25.9±0.63; 10 =
25.5±0.66) en waterbindingsvermoë (0.1 = 36.1±1.60; 0.5 = 37.3±1.42; 1 = 37.5±1.15; 10 = 36.9±1.45) nie
beïvloed was nie. Kleur metings van die SM het getoon dat ‘n 0.1 (a* = 19.38±0.50; chroma = 22.70±0.51),
0.5 (a* = 20.89±0.49; chroma = 24.34±0.56) en 10 ms (a* = 19.69±0.46; chroma = 22.98±0.58 puls wydtes
die helder en dieper rooi kleur gehad het as 1 ms (a* = 16.66±0.37; chroma = 19.99±0.32) teen dag 9 van
kleinhandel vertoning.
Ter opsomming, lei HFI tot beter vleis kwaliteit wanneer dit gekombineer word met of HVS of MVS. Verder
lei MVS tot of ’n verbetering (kleur stabiliteit) of geen nadelige effek op vleis kwaliteit (sagtheid en WBV) in
vergelyking met HVS wanneer dit gekombineer word met HFI. Die studie bewys ook dat daar ander
elektriese parameters bestaan as spanning, wat verander kan word om die pH daling te beïvloed. Deur die
frekwensie en pulswydte te verander, kan klein veranderinge aangebring word aan ’n ES sisteem. Elke
abattoir is verskillend as gevolg van uitleg, koelkamer spasie en verkoelings tempo en hierdie elektriese
parameters kan verander word om ’n ES sisteem te optimiseer sonder enige duur veranderinge aan die hele
sisteem.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/42033
Date03 1900
CreatorsLombard, Anthonie Christoffel
ContributorsHoffman, L. C., Simmons, N. J., Stellenbosch University. Faculty of Agrisciences. Dept. of Animal Sciences.
PublisherStellenbosch : Stellenbosch University
Source SetsSouth African National ETD Portal
Languageen_ZA
Detected LanguageEnglish
TypeThesis
Formatxii, 110 p. : ill.
RightsStellenbosch University

Page generated in 0.0024 seconds