Return to search

Reducible and toroidal Dehn filling with distance 3

This dissertation is an investigation into the classification of all hyperbolic manifolds which admit a reducible Dehn filling and a toroidal Dehn filling with distance 3. The first example was given by Boyer and Zhang. They used the Whitehead link. Eudave-Muñoz and Wu gave an infinite family of such hyperbolic manifolds using tangle arguments. I show in this dissertation that these are the only hyperbolic manifolds admitting a reducible Dehn filling and a toroidal Dehn filling with distance 3. The main tool to prove this is to use the intersection graphs on surfaces introduced and developed by Gordon and Luecke. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/6682
Date05 November 2009
CreatorsKang, Sungmo
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0019 seconds