Return to search

Quantization Based Data Hiding Strategies With Visual Applications

The first explored area in this thesis is the proposed data hiding method, TCQ-IS. The method is based on Trellis Coded Quantization (TCQ), whose initial state selection is arbitrary. TCQ-IS exploits this fact to hide data. It is a practical multi-dimensional that eliminates the prohibitive task of designing high dimensional quantizers. The strength and weaknesses of the method are stated by various experiments.

The second contribution is the proposed data hiding method, Forbidden Zone Data Hiding (FZDH), which relies on the concept of &ldquo / forbidden zone&rdquo / , where host signal is not altered. The main motive of FZDH is to introduce distortion as much as needed, while keeping a range of host signal intact depending on the desired level of robustness. FZDH is compared against Quantization Index Modulation (QIM) as well as DC-QIM and ST-QIM. FZDH outperforms QIM even in 1-D and DC-QIM in higher dimensions. Furthermore, FZDH is comparable with ST-QIM for certain operation regimes.

The final contribution is the video data hiding framework that includes FZDH, selective embedding and Repeat Accumulate (RA) codes. De-synchronization due to selective embedding is handled with RA codes. By means of simple rules applied to the embedded frame markers, certain level of robustness against temporal attacks is introduced. Selected coefficients are used to embed message bits by employing multi-dimensional FZDH. The framework is tested with typical broadcast material against common video processing attacks. The results indicate that the framework can be utilized in real life applications.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12611703/index.pdf
Date01 February 2010
CreatorsEsen, Ersin
ContributorsAlatan, Aydin A.
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypePh.D. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0018 seconds