Made available in DSpace on 2016-06-02T20:06:02Z (GMT). No. of bitstreams: 1
2203.pdf: 1300161 bytes, checksum: 2c1f11d939eab9ab849bb04bf2363a53 (MD5)
Previous issue date: 2009-02-10 / Financiadora de Estudos e Projetos / This study considers two discrete distributions based on Bernoulli trials: the Binomial and the Negative Binomial. We explore credibility and confidence intervals to estimate the
probability of success of each distribution. The main goal is to analyze their performance coverage probability and average range across the parametric space. We also consider point analysis of bayesian estimators and maximum likelihood estimators, whose interest is to confirm through simulation their consistency, bias and mean square error. In this paper
the Objective Bayesian Inference is applied through the noninformative Bayes-Laplace prior, Haldane prior, reference prior and least favorable prior. By analyzing the prior distributions in the minimax decision theory context we verified that the least favorable prior distribution has every other considered prior distributions as particular cases when
a quadratic loss function is applied, and matches the Bayes-Laplace prior in considering the quadratic weighed loss function for the Binomial model (which was never found in
literature). We used the noninformative Bayes-Laplace prior and Jeffreys prior for the Negative Binomial model. Our findings show through coverage probability, average range
of bayesian intervals and point estimation that the Objective Bayesian Inference has good frequentist properties for the probability of success of Binomial and Negative Binomial
models. The last stage of this study discusses the presence of correlated proportions in matched-pairs (2 × 2 table) of Bernoulli with the goal of obtaining more information in
relation of the considered measures for testing the occurrence of correlated proportions. In this sense the Trinomial model and the partial likelihood function were used from the frequentist and bayesian point of view. The Full Bayesian Significance Test (FBST) was used for real data sets and was shown sensitive to parameterization, however, this
study was not possible for the frequentist method since distinct methods are needed to be applied to Trinomial model and the partial likelihood function. / Neste estudo são abordadas duas distribuições discretas baseadas em ensaios de Bernoulli, a Binomial e a Binomial Negativa. São explorados intervalos de credibilidade e confiança para estimação da probabilidade de sucesso de ambas as distribuições. A principal finalidade é analisar nos contextos clássico e bayesiano o desempenho da probabilidade
de cobertura e amplitude média gerada pelos intervalos de confiança e intervalos de credibilidade ao longo do espaço paramétrico. Considerou-se também a análise dos estimadores pontuais bayesianos e o estimador de máxima verossimilhança, cujo interesse é confirmar por meio de simulação a consistência e calcular o viés e o erro quadrático
médio dos mesmos. A Inferência Bayesiana Objetiva é empregada neste estudo por meio das distribuições a priori não-informativas de Bayes-Laplace, de Haldane, de Jeffreys e
menos favorável. Ao analisar as distribuições a priori no contexto de teoria de decisões minimax, a distribuição a priori menos favorável resgata as demais citadas ao empregar a função de perda quadrática e coincide com a distribuição a priori de Bayes-Laplace ao considerar a função de perda quadrática ponderada para o modelo Binomial, o que não foi encontrado até o momento na literatura. Para o modelo Binomial Negativa são consideradas as distribuições a priori não-informativas de Bayes-Laplace e de Jeffreys. Com os estudos desenvolvidos pôde-se observar que a Inferência Bayesiana Objetiva para a probabilidade de sucesso dos modelos Binomial e Binomial Negativa apresentou boas
propriedades freqüentistas, analisadas a partir da probabilidade de cobertura e amplitude média dos intervalos bayesianos e por meio das propriedades dos estimadores pontuais. A última etapa do trabalho consiste na análise da ocorrência de proporções correlacionadas em pares de eventos de Bernoulli (tabela 2×2) com a finalidade de determinar um possível ganho de informação em relação as medidas consideradas para testar a ocorrência de proporções correlacionadas. Para tanto fez-se uso do modelo Trinomial e da função de verossimilhança parcial tanto numa abordagem clássica quanto bayesiana. Nos conjuntos de dados analisados observou-se a medida de evidência bayesiana (FBST) como sensível à parametrização, já para os métodos clássicos essa comparação não foi possível, pois métodos distintos precisam ser aplicados para o modelo Trinomial e para a função de verossimilhança parcial.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/4527 |
Date | 10 February 2009 |
Creators | Pires, Rubiane Maria |
Contributors | Rodrigues, Josemar |
Publisher | Universidade Federal de São Carlos, Programa de Pós-graduação em Estatística, UFSCar, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0033 seconds