This dissertation consists of three articles, proposing extensions of finite mixtures in regression models. Here we consider a flexible class of both univariate and multivariate distributions, which allow adequate modeling of asymmetric data that have multimodality, heavy tails and outlying observations. This class has special cases such as skew-normal, skew-t, skew-slash and skew normal contaminated distributions, as well as symmetric cases. Initially, a model is proposed based on the assumption that the errors follow a finite mixture of scale mixture of skew-normal (FM-SMSN) distribution rather than the conventional normal distribution. Next, we have a censored regression model where we consider that the error follows a finite mixture of scale mixture of normal (SMN) distribution. Next, we propose a censored regression model where we consider that the error follows a finite mixture of scale mixture of normal (SMN) distribution. Finally, we consider a finite mixture of multivariate regression where the error has a multivariate SMSN distribution. For all proposed models, two R packages were developed, which are reported in the appendix. / Esta tese composta por três artigos, visa propor extensões das misturas finitas nos modelos de regressão. Aqui vamos considerar uma classe flexível de distribuições tanto univariada como multivariada, que permitem modelar adequadamente dados assimmétricos, que presentam multimodalidade, caldas pesadas e observações atípicas. Esta classe possui casos especiais tais como as distribuições skew-normal, skew-t, skew slash, skew normal contaminada, assim como os casos simétricos. Inicialmente, é proposto um modelo baseado na suposição de que os erros seguem uma mistura finita da distribuição mistura de escala skew-normal (SMSN) ao invés da convencional distribuição normal. Em seguida, temos um modelo de regressão censurado onde consideramos que o erro segue uma mistura finita da distribuição da mistura de escala normal (SMN). E por último, é considerada um mistura finita de regressão multivariada onde o erro tem uma distribuição SMSN multivariada. Para todos os modelos propostos foram desenvolvidos dois pacotes do software R, que estão exemplificados no apêndice.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-10052018-131627 |
Date | 06 April 2018 |
Creators | Sánchez, Luis Enrique Benites |
Contributors | Bolfarine, Heleno, Davila, Victor Hugo Lachos |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0019 seconds