Energy consumption is increasingly affecting battery life and cooling for real- time systems. Dynamic Voltage and frequency Scaling (DVS) has been shown to substantially reduce the energy consumption of uniprocessor real-time systems. It is worthwhile to extend the efficient DVS scheduling algorithms to distributed system with dependent tasks. The dissertation describes how to extend several effective uniprocessor DVS schedul- ing algorithms to distributed system with dependent task set. Task assignment and deadline assignment heuristics are proposed and compared with existing heuristics concerning energy-conserving performance. An admission test and a deadline com- putation algorithm are presented in the dissertation for dynamic task set to accept the arriving task in a DVS scheduled real-time system. Simulations show that an effective distributed DVS scheduling is capable of saving as much as 89% of energy that would be consumed without using DVS scheduling. It is also shown that task assignment and deadline assignment affect the energy- conserving performance of DVS scheduling algorithms. For some aggressive DVS scheduling algorithms, however, the effect of task assignment is negligible. The ad- mission test accept over 80% of tasks that can be accepted by a non-DVS scheduler to a DVS scheduled real-time system.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_diss-1574 |
Date | 01 January 2007 |
Creators | Wang, Chenxing |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of Kentucky Doctoral Dissertations |
Page generated in 0.0036 seconds