Node downtime and failed jobs in a computing cluster translate into wasted resources and user dissatisfaction. Therefore understanding why nodes and jobs fail in HPC clusters is essential. This paper provides analyses of node and job failures in two university-wide computing clusters at two Tier I US research universities. We analyzed approximately 3.0M job execution data of System A and 2.2M of System B with data sources coming from accounting logs, resource usage for all primary local and remote resources (memory, IO, network), and node failure data. We observe different kinds of correlations of failures with resource usages and propose a job failure prediction model to trigger event-driven checkpointing and avoid wasted work. We provide generalizable insights for cluster management to improve reliability, such as, for some execution environments local contention dominates, while for others system-wide contention dominates.
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/9044138 |
Date | 14 August 2019 |
Creators | Rakesh Kumar (7039253) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/The_Mystery_of_the_Failing_Jobs_Insights_from_Operational_Data_from_Two_University-Wide_Computing_Systems/9044138 |
Page generated in 0.0021 seconds