The Internet of Things (IoT) is a technology aimed at developing a global network of machines and devices that can interact and communicate with each other. Supporting IoT, therefore, requires revisiting the Internet’s best effort service model and reviewing its complex communication patterns.
In this dissertation, we explore the unique characteristics of IoT traffic and examine IoT systems. Our work is motivated by the new capabilities offered by modern Software Defined Networks (SDN) and blockchain technology. We evaluate IoT Quality of Service (QoS) in traditional networking. We obtain mathematical expressions to calculate end-to-end delay, and dropping. Our results provide insight into the advantages of an intelligent edge serving as a detection mechanism.
Subsequently, we propose SADIQ, SDN-based Application-aware Dynamic Internet of things QoS. SADIQ provides context-driven QoS for IoT applications by allowing applications to express their requirements using a high-level SQL-like policy language. Our results show that SADIQ improves the percentage of regions with an error in their reported temperature for the Weather Signal application up to 45 times; and it improves the percentage of incorrect parking statuses for regions with high occupancy for the Smart Parking application up to 30 times under the same network conditions and drop rates.
Despite centralization and the control of data, IoT systems are not safe from cyber-crime, privacy issues, and security breaches. Therefore, we explore blockchain technology. In the context of IoT, Byzantine fault tolerance-based consensus protocols are used. However, the blockchain consensus layer contributes to the most remarkable performance overhead especially for IoT applications subject to maximum delay constraints. In order to capture the unique requirements of the IoT, consensus mechanisms and block formation need to be redesigned. To this end, we propose Synopsis, a novel hierarchical blockchain system. Synopsis introduces a wireless-optimized Byzantine chain replication protocol and a new probabilistic data structure. The results show that Synopsis successfully reduces the memory footprint from Megabytes to a few Kilobytes with an improvement of 1000 times. Synopsis also enables reductions in message complexity and commitment delay of 85% and 99.4%, respectively
Identifer | oai:union.ndltd.org:kaust.edu.sa/oai:repository.kaust.edu.sa:10754/668723 |
Date | 13 April 2021 |
Creators | Alaslani, Maha S. |
Contributors | Shihada, Basem, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Alouini, Mohamed-Slim, Zhang, Xiangliang, Bessani, Alysson |
Source Sets | King Abdullah University of Science and Technology |
Language | English |
Detected Language | English |
Type | Dissertation |
Rights | 2022-04-13, At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation will become available to the public after the expiration of the embargo on 2022-04-13. |
Page generated in 0.0025 seconds