Return to search

Transactive Distribution Grid with Microgrids Using Blockchain Technology for the Energy Internet

The changing nature of the energy grid in recent years has prompted key stakeholders to think of ways to address incoming challenges. Transactive energy is an approach that promises to dynamically align active grid elements coming up in the previously inactive consumers' side to achieve a reliable and smarter grid. This work models the distribution grid structure as a combination of microgrids. A blockchain-in-the loop simulation framework is modelled and simulated for a residential microgrid using power system simulators and transactive agents. Blockchain smart contracts are used to coordinate peer-to-peer energy transactions in the microgrid. The model is used to test three market coordination schemes: a simple auction-less scheme, an auction-less scheme with a normalized sorting metric and an hour ahead single auction scheme with penalties for unfulfilled bids. Case studies are presented of a microgrid with 30 homes, at different levels of solar and energy storage penetration within the microgrid, all equipped with responsive and unresponsive appliances and transactive agents for the HVAC systems. The auction-less scheme with a normalized sorting metric is observed to provide a fairer advantage to smaller solar installations in comparison to the simple auction-less method. It is then concluded that the auction-less schemes are most beneficial to users, as they would not need sophisticated forecasting technology to reduce penalties from bid quantity inaccuracies, as long as the energy mix within the microgrid is diverse enough. / Master of Science / The legacy energy industry involved the bulk transfer of energy from huge generation plants through long transmission lines to the end consumers. However, with the onset of improved renewable energy and information technologies, energy is now being generated closer to the consumer side with appliances capable of actively participating in the energy system now widely available. Transactive energy with blockchain has been proposed in order to dynamically coordinate these systems to work towards a more reliable and smarter grid using economic value in a transparent and secure way. This work models a transactive power grid as a combination of microgrids using a blockchain network to coordinate hourly peer-to-peer energy transactions. The blockchain-in-the-loop simulation model is used to compare three different market mechanisms in a residential microgrid of 30 homes with varying levels of solar panels, batteries and transactive thermostats installed. Two auction-less schemes - one with a normalized sorting metric - and an hour ahead single auction mechanism are analyzed. While the auction-less scheme with the normalized metric is seen to be fairer than the simple auction-less scheme, it is concluded that the auction-less schemes are most beneficial to residents. This is because sophisticated forecasting technology would not be needed like in the hour ahead auction scheme, provided that the microgrid has participants with diverse energy consumption and production profiles throughout the day.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/102216
Date13 August 2019
CreatorsDimobi, Ikechukwu Samuel
ContributorsElectrical Engineering, Rahman, Saifur, Kekatos, Vasileios, Broadwater, Robert P.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0032 seconds