Return to search

Restabelecimento de energia em sistemas de distribuição de energia elétrica com priorização de chaves automáticas / Service restoration in distribution systems with prioritization of remote controlled switches

Esta dissertação trata do problema de restabelecimento de energia em sistemas de distribuição de grande porte (com milhares de linhas, barras de carga e chaves seccionadoras) em situações de contingência. Este problema consiste basicamente na determinação de chaves seccionadoras que devem ser operadas para permitir a transferência de blocos de carga a fim de re-conectar consumidores fora de serviço atendendo às restrições operacionais do sistema. Diversas metodologias têm sido desenvolvidas para lidar com o problema de restabelecimento de energia. Entretanto, a maioria perde eficiência computacional quando aplicadas em sistemas de distribuição de grande porte e/ou não fazem distinção entre chaves manuais e automáticas (controladas remotamente). Propõe-se uma metodologia para obtenção, em tempo-real, de planos de restabelecimento de energia em sistemas de distribuição de grande porte, que priorize a utilização de chaves seccionadoras controladas remotamente. Priorizar a utilização de chaves controladas remotamente permite a obtenção de planos de restabelecimento mais rápidos de serem implantados. Para lidar com os múltiplos objetivos e restrições do problema de restabelecimento de energia, a metodologia proposta será baseada em Algoritmos Evolutivos Multi-Objetivo, enquanto que a eficiência computacional para possibilitar o tratamento de sistemas de grande porte será proporcionada através da utilização da codificação de dados denominada Representação Nó-Profundidade. Para validar a metodologia proposta realizar-se-ão diversas simulações computacionais no sistema de distribuição real da cidade de São Carlos-SP, e nas suas versões duplicada, quadruplicada e octuplicada, considerando-se a ocorrência tanto de falta única quanto de múltiplas faltas. / This thesis focuses on the service restoration problem in large scale distribution systems (distribution systems with thousands of switches and load buses) in contingency situations. This problem consists basically in determining the sectionalizing switches that must be operated in order to reconnect the out of service loads without violating any operational constraints. Several methodologies have been developed to deal with the service restoration problem in distribution systems. However, the majority of them demand high running time when used for large scale distribution systems and/or do not consider the existence of switches that can be remotely operated. It is proposed a methodology for determining, in real time, service restoration plans in large scale distribution systems. In order to determine service plans that can be implemented faster, the methodology will give priority to use remotely controlled switches. To deal with the multiple objectives and constraints of the service restoration problem, the proposed methodology will be based on Multi-objective Evolutionary algorithms. To guarantee computational efficiency to treat large scale distribution systems, the data encoding called Node-Depth Encoding will be used. The real distribution system of the São Carlos-SP city, and its doubled, quadruplicated and octuplicate versions will be used to validate the proposed methodology. It will be simulated cases considering one and multiple faults.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-06052014-162810
Date28 March 2014
CreatorsRemy Amorim Caero Marquez
ContributorsJoão Bosco Augusto London Júnior, Frederico Gadelha Guimarães, Cláudio Fabiano Motta Toledo
PublisherUniversidade de São Paulo, Engenharia Elétrica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0016 seconds