Return to search

A nova família de distribuições odd log-logística: teoria e aplicações / The new family of odd log-logistic distributions: theory and applications

Neste trabalho, foi proposta uma nova família de distribuições, a qual permite modelar dados de sobrevivência quando a função de risco tem formas unimodal e U (banheira). Ainda, foram consideradas as modificações das distribuições Weibull, Fréchet, half-normal generalizada, log-logística e lognormal. Tomando dados não-censurados e censurados, considerou-se os estimadores de máxima verossimilhança para o modelo proposto, a fim de verificar a flexibilidade da nova família. Além disso, um modelo de regressão locação-escala foi utilizado para verificar a influência de covariáveis nos tempos de sobrevida. Adicionalmente, conduziu-se uma análise de resíduos baseada nos resíduos deviance modificada. Estudos de simulação, utilizando-se de diferentes atribuições dos parâmetros, porcentagens de censura e tamanhos amostrais, foram conduzidos com o objetivo de verificar a distribuição empírica dos resíduos tipo martingale e deviance modificada. Para detectar observações influentes, foram utilizadas medidas de influência local, que são medidas de diagnóstico baseadas em pequenas perturbações nos dados ou no modelo proposto. Podem ocorrer situações em que a suposição de independência entre os tempos de falha e censura não seja válida. Assim, outro objetivo desse trabalho é considerar o mecanismo de censura informativa, baseado na verossimilhança marginal, considerando a distribuição log-odd log-logística Weibull na modelagem. Por fim, as metodologias descritas são aplicadas a conjuntos de dados reais. / In this study, a new family of distributions was proposed, which allows to model survival data when the function of risk has unimodal shapes and U (bathtub). Modifications of the Weibull, Fréchet, generalized half-normal, log-logistic and lognormal distributions were considered. Taking censored and non-censored data, we consider the maximum likelihood estimators for the proposed model, in order to check the flexibility of the new family. Also, it was considered a location-scale regression model, to verify the influence of covariates on survival times. Additionally, a residual analysis was conducted based on modified deviance residuals. For different parameters fixed, percentages of censoring and sample sizes, several simulation studies were performed with the objective of verify the empirical distribution of the martingale type and modified deviance residuals. To detect influential observations, measures of local influence were used, which are diagnostic measures based on small perturbations in the data or in the proposed model. It can occur situations in which the assumption of independence between the failure and censoring times is not valid. Thus, another objective of this work is to consider the informative censoring mechanism based on the marginal likelihood, considering the log-odd log-logistic Weibull distribution in modelling. Finally, the methodologies described are applied to sets of real data.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-03052016-183138
Date18 February 2016
CreatorsJosé Nilton da Cruz
ContributorsEdwin Moises Marcos Ortega, Gauss Moutinho Cordeiro, Sonia Maria de Stefano Piedade, Adriano Kamimura Suzuki
PublisherUniversidade de São Paulo, Agronomia (Estatística e Experimentação Agronômica), USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds