DNA repair mechanisms constitute an essential cellular response to DNA damage arising either from metabolic processes or from environmental sources such as ultraviolet radiation. Repair of these lesions may be via direct reversal, or by processes such as nucleotide excision repair (NER), a coordinated pathway in which lesions and the surrounding nucleotides are excised and replaced via DNA resynthesis. The importance of repair is illustrated by human disease states such as xeroderma pigmentosum and Cockayne's syndrome which result from defects in the NER system arising from mutations in XP- genes or XP- and CS- genes respectively
Little detail is known of DNA damage repair processes in plants, despite the economic and ecological importance of these organisms. This study aimed to expand our knowledge of the process of NER in plants, largely via a polymerase chain reaction (PCR)-based approach involving amplification, cloning and characterisation of plant genomic DNA and cDNA. Homologues of the NER components XPF/RAD1 and XPD/RAD3 were isolated as both genomic and complete cDNA sequences from the model dicotyledonous plant Arabidopsis thaliana. The sequence of the 3'-untranslated region of atXPD was also determined. Comparison of genomic and cDNA sequences allowed a detailed analysis of gene structures, including details of intron/exon processing. Variable transcript processing to produce three distinct transcripts was found in the case of atXPF. In an attempt to validate the proposed homologous function of these cDNAs, assays to test complementation of resistance to ultraviolet radiation in the relevant yeast mutants were performed. Despite extensive amino acid sequence conservation, neither plant cDNA was able to restore UV-resistance. As the yeast RAD3 gene product is also involved in vivo in transcription, and so is required for viability, the atXPD cDNA was tested in a complementation assay for this function in an appropriate yeast mutant. The plant cDNA was found to substantially increase the viability of the yeast mutant.
The structural and functional significance of these results is discussed comparatively with reference to yeast, human and other known homologues. Other putative NER homologues were identified in A. thaliana database sequences, including those of ERCC1/RAD10 and XPG/ERCC5/RAD2, and are now the subjects of ongoing investigations. This study also describes preliminary investigations of putative REVS and RAD30 translesion synthesis genes from A. thaliana.
Identifer | oai:union.ndltd.org:ADTP/217103 |
Date | January 2000 |
Creators | Vonarx, Edward J, mikewood@deakin.edu.au |
Publisher | Deakin University. School of Biological and Chemical Sciences |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://www.deakin.edu.au/disclaimer.html), Copyright Edward J Vonarx |
Page generated in 0.0022 seconds