Uma forma de extrair e organizar o conhecimento, que tem recebido muita atenção nos últimos anos, é por meio de uma representação estrutural dividida por tópicos hierarquicamente relacionados. Uma vez construída a estrutura hierárquica, é necessário encontrar descritores para cada um dos grupos obtidos pois a interpretação destes grupos é uma tarefa complexa para o usuário, já que normalmente os algoritmos não apresentam descrições conceituais simples. Os métodos encontrados na literatura consideram cada documento como uma bag-of-words e não exploram explicitamente o relacionamento existente entre os termos dos documento do grupo. No entanto, essas relações podem trazer informações importantes para a decisão dos termos que devem ser escolhidos como descritores dos nós, e poderiam ser representadas por regras de associação. Assim, o objetivo deste trabalho é avaliar a utilização de regras de associação para apoiar a identificação de descritores para agrupamentos hierárquicos. Para isto, foi proposto o método SeCLAR (Selecting Candidate Labels using Association Rules), que explora o uso de regras de associação para a seleção de descritores para agrupamentos hierárquicos de documentos. Este método gera regras de associação baseadas em transações construídas à partir de cada documento da coleção, e utiliza a informação de relacionamento existente entre os grupos do agrupamento hierárquico para selecionar candidatos a descritores. Os resultados da avaliação experimental indicam que é possível obter uma melhora significativa com relação a precisão e a cobertura dos métodos tradicionais / One way to organize knowledge, that has received much attention in recent years, is to create a structural representation divided by hierarchically related topics. Once this structure is built, it is necessary to find labels for each of the obtained clusters, since most algorithms do not produce simple descriptions and the interpretation of these clusters is a difficult task for users. The related works consider each document as a bag-of-words and do not explore explicitly the relationship between the terms of the documents. However, these relationships can provide important information to the decision of the terms that must be chosen as descriptors of the nodes, and could be represented by rass. This works aims to evaluate the use of association rules to support the identification of labels for hierarchical document clusters. Thus, this paper presents the SeCLAR (Selecting Candidate Labels using Association Rules) method, which explores the use of association rules for the selection of good candidates for labels of hierarchical clusters of documents. This method generates association rules based on transactions built from each document in the collection, and uses the information relationship between the nodes of hierarchical clustering to select candidates for labels. The experimental results show that it is possible to obtain a significant improvement with respect to precision and recall of traditional methods
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-17112010-110417 |
Date | 17 September 2010 |
Creators | Santos, Fabiano Fernandes dos |
Contributors | Rezende, Solange Oliveira |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0021 seconds