Denna rapport syftar primärt till att undersöka hur väl system för maskinöversättning kan prestera i relation till Scanias kravbild. Undersökningen riktar sig främst till att undersöka systemens förmåga till domänanpassning och vilken effekt det har på dess maskinöversättningar. Utvärdering görs dels med automatiska utvärderingsmetoder som på olika sätt mäter korrelation till existerande textinnehåll från diverse tjänster i samlingsplattformen MyScania, men även manuellt av översättare med erfarenhet inom Scanias språkbruk. Resultatet av denna undersökning visade att domänanpassning med egna data generellt ökar kvaliteten av maskinöversättningar. Det noteras även hur väl maskinöversättningarna presterar varierar mycket på faktorer som exempelvis språk. Google AutoML lyckas däremot prestera bäst i alla de testade språken. Detta visades vid både automatisk utvärdering och manuell utvärdering. Undersökningen visade även svagheter i automatisk utvärderingsmetrik vid fristående användning men samtidigt att det kan bidra med meningsfulla insikter när det kompletteras med mänsklig bedömning. Undersökningen bekräftar att mänsklig bedömning alltid bör användas om det är möjligt. / This report’s primary purpose is to examine how well systems for machine translation can perform in relation to what is sought after by Scania. This examination is primarily aimed at investigating the systems capability for domain customization and what effects these have on the results of machine translations. Evaluation is done partly using multiple automatic metrics that in different ways measure correlation to existing translations within MyScania, combined with manual evaluation done by translators experienced with Scania’s language usage. The results of this examination showed that domain customization using own data generally increases the quality of machine translations. It is noted that how the machine translations perform is affected by many factors such as languages, Google AutoML however succeeds to perform the best in all the tested languages. This is proven both in evaluation using automatic metrics and manual evaluation. This investigation also showed weaknesses in automatic metrics in stand-alone use but that they can contribute with meaningful knowledge when complemented by manual evaluation. This investigation confirms that manual evaluation should always be used when possible.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-320097 |
Date | January 2022 |
Creators | Olofsson, Martin, Larsson, Jesper |
Publisher | KTH, Hälsoinformatik och logistik |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-CBH-GRU ; 2022:266 |
Page generated in 0.0027 seconds