Return to search

Effective Distribution Theory

In this thesis we introduce and study a notion of effectivity (or computability) for test functions and for distributions. This is done using the theory of effective (Scott-Ershov) domains and effective domain representations. To be able to construct effective domain representations of the spaces of test functions considered in distribution theory we need to develop the theory of admissible domain representations over countable pseudobases. This is done in the first paper of the thesis. To construct an effective domain representation of the space of distributions, we introduce and develop a notion of partial continuous function on domains. This is done in the second paper of the thesis. In the third paper we apply the results from the first two papers to develop an effective theory of distributions using effective domains. We prove that the vector space operations on each space, as well as the standard embeddings into the space of distributions effectivise. We also prove that the Fourier transform (as well as its inverse) on the space of tempered distributions is effective. Finally, we show how to use convolution to compute primitives on the space of distributions. In the last paper we investigate the effective properties of a structure theorem for the space of distributions with compact support. We show that each of the four characterisations of the class of compactly supported distributions in the structure theorem gives rise to an effective domain representation of the space. We then use effective reductions (and Turing-reductions) to study the reducibility properties of these four representations. We prove that three of the four representations are effectively equivalent, and furthermore, that all four representations are Turing-equivalent. Finally, we consider a similar structure theorem for the space of distributions supported at 0.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-8210
Date January 2007
CreatorsDahlgren, Fredrik
PublisherUppsala universitet, Matematiska institutionen, Uppsala : Matematiska institutionen
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUppsala Dissertations in Mathematics, 1401-2049 ; 50

Page generated in 0.1194 seconds