Cette thèse présente une méthode performante pour le calcul des capacités parasites dues aux interconnexions des circuits intégrés. Il s'agit de calculer la charge des conducteurs, comme la dérivée normale à la surface de ces conducteurs, du potentiel solution de l'équation de Laplace sur des couches horizontales, la valeur du potentiel étant fixée constante sur chaque conducteur. La difficulté de la résolution numérique provient de la complexité des structures : sur une portion de circuit d'une surface d'un centimètre carré et d'une hauteur de quelques microns, il peut y avoir plus d'un kilomètre d'interconnexions, c'est-à-dire de fils conducteurs enchevêtrés. Une méthode de domaines fictifs avec multiplicateurs de Lagrange surfaciques est utilisée. Elle donne une formulation mixte du problème, couplant le potentiel sur un domaine parallélépipédique contenant le circuit, et la charge à la surface des conducteurs. Nous en proposons une approximation, qui tient compte du saut du gradient du potentiel à travers la surface des conducteurs dans la discrétisation du potentiel, tout en menant à un système que l'on peut résoudre par une méthode rapide. Cette approximation garantit une bonne convergence du calcul de la charge vers la valeur réelle, sans condition de compatibilité contraignante entre les maillages de volume et de surface. Une implémentation efficace en dimension 3, avec laquelle nous avons effectué des tests numériques sur des structures réelles, permet de montrer l'intérêt de la méthode, en temps de calcul et en place mémoire.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00004700 |
Date | 15 January 2001 |
Creators | Putot, Sylvie |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds