Title: Multivariate stochastic dominance and its application in portfolio optimization Problems Author: Barbora Petrová Department: Department of Probability and Mathematical Statistics Supervisor: doc. RNDr. Ing. Miloš Kopa, Ph.D., Department of Probability and Mathematical Statistics Abstract: This thesis discusses the concept of multivariate stochastic dominance, which serves as a tool for ordering random vectors, and its possible usage in dynamic portfolio optimization problems. We strictly focus on different types of the first-order multivariate stochastic dominance for which we describe their generators in the sense of von Neumann-Morgenstern utility functions. The first one, called strong multivariate stochastic dominance, is generated by all nondecreasing multivariate utility functions. The second one, called weak multivariate stochastic dominance, is defined by relation between survival functions, and the last one, called the first-order linear multivariate stochastic dominance, applies the first-order univariate stochastic dominance notion to linear combinations of marginals. We focus on the main characteristics of these types of stochastic dominance, their relationships as well as their relation to the cumulative and marginal distribution functions of considered random vectors. Formulated...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:389649 |
Date | January 2018 |
Creators | Petrová, Barbora |
Contributors | Kopa, Miloš, Ortobelli, Sergio, Branda, Martin |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds