A path π = (v1, v2, ⋯ , vk+1) in a graph G = (V,E) is a downhill path if for every i, 1 ≤ i ≤ k, deg(vi) ≥ deg(vi+1), where deg(vi) denotes the degree of vertex vi ∈ V. The downhill domination number equals the minimum cardinality of a set S ⊆ V having the property that every vertex v ∈ V lies on a downhill path originating from some vertex in S. We investigate downhill domination numbers of graphs and give upper bounds. In particular, we show that the downhill domination number of a graph is at most half its order, and that the downhill domination number of a tree is at most one third its order. We characterize the graphs obtaining each of these bounds.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-17099 |
Date | 01 January 2014 |
Creators | Haynes, Teresa W., Hedetniemi, Stephen T., Jamieson, Jessie D., Jamieson, William B. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.002 seconds