L'analyse en ligne OLAP permet une navigation interactive dans les données, une visualisation rapide de l'information et une exploration de la structure multidimensionnelle des données. Une des limites est de se restreindre à des aspects exploratoires et navigationnels. De plus, avec l'avènement des données complexes (données multi-format et/ou multi-structure et/ou multi-source et/ou multi-modale et/ou multi-version), l'analyse en ligne doit s'adapter à la nature spécifique de ces données tout en gardant l'esprit de l'OLAP. Les opérateurs OLAP sont définis pour des données classiques et sont souvent inadaptés quand il s'agit de données complexes par exemple composées de textes, images, son ou vidéos. Les limites de l'OLAP ainsi que la spécificité des données complexes nécessitent une évolution ou adaptation de l'OLAP. Il devient nécessaire de : (1) enrichir les possibilités de l'analyse OLAP en la dotant de nouvelles possibilités ; (2) créer une analyse en ligne adaptée aux données complexes ; (3) faire évoluer l'OLAP vers une analyse sémantique des données. Dans cette vaste problématique, nous choisissons de traiter les questions d'agrégation et visualisation des données complexes, de réorganisation du cube pour identifier des régions d'analyse intéressantes, et d'étendre l'OLAP à des possibilités d'explication et de prédiction. Pour toutes ces questions, nous essayons également de tenir compte de la sémantique véhiculée par les données. Pour apporter des premières solutions, nous orientons vers une combinaison des principes de l'OLAP, de la fouille de données et de la recherche d'information. Afin d'introduire une analyse explicative dans l'OLAP, nous faisons une recherche guidée de règles d'association dans le cube. Cela nous conduit à modifier la définition du support et de la confiance d'une règle. Les arbres de régression nous permettent de proposer à l'utilisateur de faire de la prédiction dans le cube et d'avoir ainsi une démarche de type What If Analysis. Pour l'analyse des données complexes, deux méthodes factorielles (AFC et ACM) rendent possible la visualisation des faits dans un cube et la détection de régions intéressantes en réorganisant les dimensions du cube. Nous proposons également une agrégation sémantique des faits et une nouvelle hiérarchie de dimension construite automatiquement grâce aux principes d'une méthode de classification (CAH). Nos propositions sont une première démonstration de la faisabilité de combiner l'OLAP à d'autres techniques comme la fouille de données et la recherche d'information pour faire significativement évoluer l'analyse en ligne et s'adapter aux données complexes. L'OLAP a commencé à s'adapter à leur structure et à leur spécificité (XOLAP - XML OLAP, SOLAP - spatial OLAP). Mais il faut aller au delà et nous pensons qu'un des défis est d'extraire et d'analyser (en ligne) la sémantique contenue dans les données complexes. Ce point constitue un véritable verrou scientifique mais qui est que partiellement abordé par la communauté scientifique. Il faudrait également identifier tous les problèmes posés par les données complexes et ce quels que soient leur nature, contexte ou spécificités. Nous voulons poursuivre nos travaux dans cette voie et faire évoluer l'OLAP vers une nouvelle génération d'analyse en ligne : l'OLAP sémantique. Les problèmes majeurs à traiter seront comment : (1) modéliser toutes les formes de données complexes, leur sémantique et leurs liens ; (2) analyser en ligne les données complexes ; (3) Intégrer les connaissances de l'utilisateur dans le processus de l'analyse ?
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00794529 |
Date | 29 June 2011 |
Creators | Loudcher, Sabine |
Publisher | Université Lumière - Lyon II |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | habilitation ࠤiriger des recherches |
Page generated in 0.0023 seconds