Les situations spatio-temporelles dynamiques sont des situations qui évoluent dans l’espace et dans le temps. L’être humain peut identifier des configurations de situations dans son environnement et les utilise pour prendre des décisions. Ces configurations de situations peuvent aussi être appelées « situations d’intérêt » ou encore « patrons spatio-temporels ». En informatique, les situations sont obtenues par des systèmes d’acquisition de données souvent présents dans diverses industries grâce aux récents développements technologiques et qui génèrent des bases de données de plus en plus volumineuses. On relève un problème important dans la littérature lié au fait que les formalismes de représentation utilisés sont souvent incapables de représenter des phénomènes spatiotemporels dynamiques et complexes qui reflètent la réalité. De plus, ils ne prennent pas en considération l’appréhension cognitive (modèle mental) que l’humain peut avoir de son environnement. Ces facteurs rendent difficile la mise en œuvre de tels modèles par des agents logiciels. Dans cette thèse, nous proposons un nouveau modèle de représentation des situations d’intérêt s’appuyant sur la notion des patrons spatiotemporels. Notre approche utilise les graphes conceptuels pour offrir un aspect qualitatif au modèle de représentation. Le modèle se base sur les notions d’événement et d’état pour représenter des phénomènes spatiotemporels dynamiques. Il intègre la notion de contexte pour permettre aux agents logiciels de raisonner avec les instances de patrons détectés. Nous proposons aussi un outil de génération automatisée des relations qualitatives de proximité spatiale en utilisant un classificateur flou. Finalement, nous proposons une plateforme de gestion des patrons spatiotemporels pour faciliter l’intégration de notre modèle dans des applications industrielles réelles. Ainsi, les contributions principales de notre travail sont : Un formalisme de représentation qualitative des situations spatiotemporelles dynamiques en utilisant des graphes conceptuels. ; Une approche cognitive pour la définition des patrons spatio-temporels basée sur l’intégration de l’information contextuelle. ; Un outil de génération automatique des relations spatiales qualitatives de proximité basé sur les classificateurs neuronaux flous. ; Une plateforme de gestion et de détection des patrons spatiotemporels basée sur l’extension d’un moteur de traitement des événements complexes (Complex Event Processing). / Dynamic spatiotemporal situations are situations that evolve in space and time. They are part of humans’ daily life. One can be interested in a configuration of situations occurred in the environment and can use it to make decisions. In the literature, such configurations are referred to as “situations of interests” or “spatiotemporal patterns”. In Computer Science, dynamic situations are generated by large scale data acquisition systems which are deployed everywhere thanks to recent technological advances. Spatiotemporal pattern representation is a research subject which gained a lot of attraction from two main research areas. In spatiotemporal analysis, various works extended query languages to represent patterns and to query them from voluminous databases. In Artificial Intelligence, predicate-based models represent spatiotemporal patterns and detect their instances using rule-based mechanisms. Both approaches suffer several shortcomings. For example, they do not allow for representing dynamic and complex spatiotemporal phenomena due to their limited expressiveness. Furthermore, they do not take into account the human’s mental model of the environment in their representation formalisms. This limits the potential of building agent-based solutions to reason about these patterns. In this thesis, we propose a novel approach to represent situations of interest using the concept of spatiotemporal patterns. We use Conceptual Graphs to offer a qualitative representation model of these patterns. Our model is based on the concepts of spatiotemporal events and states to represent dynamic spatiotemporal phenomena. It also incorporates contextual information in order to facilitate building the knowledge base of software agents. Besides, we propose an intelligent proximity tool based on a neuro-fuzzy classifier to support qualitative spatial relations in the pattern model. Finally, we propose a framework to manage spatiotemporal patterns in order to facilitate the integration of our pattern representation model to existing applications in the industry. The main contributions of this thesis are as follows: A qualitative approach to model dynamic spatiotemporal situations of interest using Conceptual Graphs. ; A cognitive approach to represent spatiotemporal patterns by integrating contextual information. ; An automated tool to generate qualitative spatial proximity relations based on a neuro-fuzzy classifier. ; A platform for detection and management of spatiotemporal patterns using an extension of a Complex Event Processing engine.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/27291 |
Date | 24 April 2018 |
Creators | Barouni, Foued |
Contributors | Moulin, Bernard |
Source Sets | Université Laval |
Language | English |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xx, 184 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0025 seconds