Return to search

Ultrafast Photoinduced Energy and Electron Transfer Studies in Closely Bound Molecular and Nanocarbon Donor-Acceptor Systems

As part of the study, photosynthetic system constructs based on BF2-chelated dipyrromethene (BODIPY), BF2-chelated azadipyrromethene (AzaBODIPY), porphyrin, phthalocyanine, oxasmaragdyrin, polythiophene, fullerene (C60), single-walled carbon nanotube and graphene are investigated. Antenna systems of BODIPY dyads and oligomers having BODIPY as an excitation energy donor connected to different acceptors including BODIPY, azaBODIPY, oxasmaragdyrin and aluminum porphyrin are studied. Different synthetic methodologies are used to afford donor-acceptor systems either directly linked with no spacer or with short spacers of varying length and orientation. The effect of donor orientation, donor optical gap as well as nature of donor-acceptor coupling on the donor-acceptor spectral overlap and hence the rate of excitation energy transfer is investigated. In all these systems, an ultrafast energy transfer followed by electron transfer is observed. In particular, in a directly connected BODIPY-azaBODIPY dyad an unusually ultrafast energy transfer (~ 150−200 f) via Förster mechanism is observed. The observation of energy transfer via Förster instead of Dexter mechanism in such closely coupled donor-acceptor systems shows the balance between spatial and electronic coupling achieved in the donor-acceptor system.
Moreover, in donor-acceptor systems involving semiconducting 1D and 2D materials, covalently functionalized single-walled carbon nanotubes via charge stabilizing (TPA)3ZnP and noncovalently hybridized exfoliated graphene via polythiophene chromophores are studied for their charge transportation functions. In both cases, not only an ultrafast charge transfer in the range of (~ 2−5 p) is observed but also the charge-separated states were long lived implying the potential of these functionalized materials as efficient charge transporting substrates with organic chromophores for photovoltaic and optoelectronic applications where ultrafast intercomponent charge transfer is vital. In addition, as a final part of this dissertation, the mechanisms of electron injection and back electron transfer in heterogeneous systems involving supramolecularly anchored high potential chromophores on TiO2 film are studied by femtosecond transient absorption spectroscopy. In this study, not only are important insights gained on the utilization of supramolecular anchoring of chromophores such as porphyrins, phthalocyanines, and their perflorinated high potential analogues, chromophores currently showing promise as highly efficient sensitizers in dye sensitized solar cells, on TiO2 film but also on the effect of anchor length and sensitizer orientation on the rates of electron injection and back electron transfer at the sensitizer-TiO2 interface.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc1248516
Date08 1900
CreatorsGobeze, Habtom Berhane
ContributorsD'Souza, Francis, Chyan, Oliver Ming-Ren, Slaughter, LeGrande M., Bouanani, Mohamed El
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatxvii, 306 pages, Text
RightsPublic, Gobeze, Habtom Berhane, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0016 seconds