Return to search

Functional Characterization of the Parl Mitochondrial Proteins in Zebrafish (Danio rerio)

The aim of this thesis was the functional characterization of the zebrafish parl (Presenilin-Associated Rhomboid-Like) genes which code for mitochondrial proteins involved in cell survival. A mutation in PARL has been described in Parkinson’s disease patients. I investigated the role of mitochondrial PD-related proteins using a zebrafish parla and parlb deficiency model. I found that the knockdown of both parl genes is lethal. Parla plays a larger role in patterning of the DA neurons in the ventral diencephalon than Parlb. The human PARL rescued the double morphant phenotype, suggesting function conservation between zebrafish and humans. I was able to rescue the mortality and DA neuron mispatterning observed in double morphants with synthetic pink1 mRNA. This suggests that parl genes are epistatic to pink1 in zebrafish. To visualize mitochondria specifically in dopaminergic neurons of live zebrafish, I established a transgenic line Tg(dat:tom20 MLS-mCherry) where regulatory elements of the dopamine transporter (dat) were used to drive expression of a Tom20-mCherry fusion protein that is targeted to the mitochondria. I characterised the expression of Tom20-mCherry to the mitochondria of the majority of DA neuron groups. In addition, I observed a decrease in mCherry fluorescence following MPTP exposure of live fish. The PD-related mutation in PARL is located in a cleavage site of the mammalian protein, which is necessary for the production of the beta peptide; however, this site is predicted to be absent in the zebrafish Parls. To establish the cleavage patterns of the zebrafish Parls and compare them to those of human PARL, I examined the cleavage of Parl-Flag constructs in cultured cells. I detected one band for Parla-Flag and two bands representing Parlb-Flag. The parla and parlb deficiency model along with the characterization of the cleavage patterns of Parl and the Tg(dat:tom20 MLS-mCherry) transgenic line are tools which will help elucidate the role of mitochondrial proteins in PD research.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/30970
Date January 2014
CreatorsNoble, Sandra A.
ContributorsEkker, Marc
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0023 seconds