Return to search

Algoritmo de reconstrução de dose a partir de mapas portais de dose utilizando simulação Monte Carlo / Dose reconstruction algorithm from portal dose maps using Monte Carlo simulation

Electronic Portal Image Devices (EPID) são dispositivos eletrônicos que foram criados originalmente para aquisição de imagens portais. Atualmente eles também têm sido estudados para reconstrução de dose no plano do eixo central (paralelo ao EPID) na modalidade transit (modalidade que considera um material atenuador entre a fonte e o EPID). Neste trabalho foi determinado um algoritmo de reconstrução de dose para relacionar mapas bidimensionais de dose localizados dentro de geometrias que simularam uma situação clínica em radioterapia de forma simplificada. Para tal foram feitas simulações Monte Carlo utilizando o pacote de simulação PENELOPE de maneira que um cubo composto de água representou o corpo do paciente e um paralelepípedo retângulo composto de água representou o EPID. Definiu-se primeiramente a geometria controle e os parâmetros de irradiação controle e então foram feitas simulações para determinar a equação de reconstrução de dose referencial. Uma vez determinada essa equação, foram feitas novas simulações variando o tamanho de campo, espessura do objeto simulador do corpo, distância entre a fonte e a superfície de entrada do objeto simulador do corpo (DFS) e distância entre a superfície de saída do objeto simulador do corpo e o centro do objeto simulador do EPID (DSDE). Os arquivos de saída dessas simulações alimentaram o programa contendo o algoritmo de reconstrução de dose, feito em MATLAB®. Após a aplicação do programa, comparou-se a matriz que representa o mapa bidimensional localizado dentro do objeto simulador do corpo com a matriz localizada no mesmo local, reconstruída a partir da matriz que representa o objeto simulador do EPID. Os resultados encontrados neste trabalho mostram que a equação de reconstrução de dose e o algoritmo de reconstrução de dose propostos são válidos com desvios padrão menor que 1,6%. / Electronic Portal Image Devices (EPID) were originally created to acquire portal images, but they have also been studied for dose reconstruction in the central axis plane (parallel to the EPID) in transit mode (mode which considers an attenuator material between the source and the EPID). In this work we determined a dose reconstruction algorithm that relate two-dimensional dose maps located within geometries that simulated a clinical situation in simplified form. For this, simulations were performed using the simulation package PENELOPE so that a cube composed of water represented the patients body and a rectangle parallelepiped composed of water represented the EPID. We defined a control geometry and control irradiation parameters first, then simulations were performed to determine the referential dose reconstruction equation. Once determined this equation, new simulations were performed varying the field size, the body phantom thickness, the distance between the source and the body phantom entrance surface (DFS) and the distance between the body phantom exit surface and the EPID phantom center. The output files of these simulations fed the program containing the dose reconstruction algorithm, wrote in MATLAB®. After the program application, we compared the matrix that represents the two-dimensional map located within the body phantom with the matrix located at the same site, reconstructed from the matrix that represents the EPID phantom. The results in this work show that the dose reconstruction equation and the dose reconstruction algorithm proposed are valid with less than 1,6% standard deviation.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-11122014-152622
Date15 October 2014
CreatorsRodrigues, Eduardo de Matos
ContributorsNicolucci, Patrícia
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0032 seconds