Technology is the answer to most of our human needs but every technology is often
accompanied by other challenges which often lead to the evolvement of another technology.
One of the technologies that have greatly impacted our world is that of energy development
out of which the petro–chemical industry is an important one.
The petro–chemical industry remains the main energy hub for our world today through ranges
of products coming from its ambit but not without its own challenges too. One of which is the
issue of breakdown or shut down which always require maintenance. Shutdown, many a
times, may be planned (annual, quarterly, condition–based, time–based, preventive and so on)
or unplanned (run–to–failure).
In any case, maintenance personnel (mechanical, electrical and instrument) must perform their
duties to fix it. In the process of fixing the equipment several factors affect the effectiveness
of the personnel. To improve maintenance activities, factors affecting its effectiveness should
be addressed. Some of the factors that are already been considered are; Overall Equipment
Effectiveness(OEE), Precision maintenance, Maintainability, Computerized Maintenance
Management System (CMMS), Work Order management, Equipment, Logistics, Process
optimization, Supply chain management, Maintenance strategies, Continuous Improvement
Hours and so on. (Taylor, 2000; Siemens.com, 2010)
Of those factors, many people hardly think of ergonomics as a factor of reckoning with
maintenance activities. Ergonomics is mostly thought of in relation to operators and office
workers.
According to National Institute for Occupational Safety and Health in U.S.A (2009),
ergonomic injuries are the most common cause of workplace illness and injury in the United
States. Back injuries and cumulative trauma disorders (CTDs) such as carpal tunnel
syndrome, tendinitis, bursitis and epicondylitis form the majority of non–fatal occupational
injuries and illnesses, costing employers more than 12 billion dollars per year in lost work
time, workers compensation payments and medical expenses.
Of the cost implication of ergonomics ailment reported above, how much of it is related to
maintenance activities? Is there any relationship between maintenance activities andergonomics? In what direction is the relationship? positive or negative? How much is the
impact in either direction? If it is negative, how can we mitigate it? Finally, what are the
benefits, if any? These are some of the vital questions this dissertation is set to answer in
relation to: physical, somatic, medical, overhead cost, production down–time and personnel
morale.
To achieve the afore–mentioned, several research instruments were employed which include;
case studies, questionnaires, physical observations, interviews, literature reviews, internet
resources, journals and other sources (industry experts and professionals).
Relevant keywords and concepts were thoroughly researched in the literature review which
serves as a base for the dissertation.
Two hundred technical personnel (maintenance) serve as the population sample and
questionnaires were administered to them. Technical personnel with appreciable number of
years of experience occupying managerial positions were also interviewed. The outcomes of
all the interviews, observations and questionnaires were analysed and interpreted accordingly
to verify how ergonomics impact maintenance.
This dissertation based on findings, was able to establish that ergonomics impact the activities
of maintenance personnel culminated in proposing an E4M (Ergonomics for Maintenance)
assessor. The assessor alongside utilization guidelines and a training matrix will help to
effectively mitigate the impact of ergonomics on maintenance activities. There is room for
further development of the tool into a computer based package for real–time assessment and
mitigation.
The assessor and its instruments cannot work alone without the commitment of stake–holders
in the industry. That is why recommendations were included for effective application of the
tool.
The dissertation did not overlook the good works the industry has been doing in the area of
creating awareness about repetitive stress injuries among its workforce but only complement
its efforts in areas they might not look into. That is in a bid to improve the effectiveness of its
workforce which will directly increase productivity, profit and stakeholders confidence. On the other hand, it will reduce their indirect losses through; production down–time, medical
cost and over–head costs.
However, the application of the E4M assessor is not limited to the petro–chemical industry
only but finds its applicability in other industries like; manufacturing, aviation, automobile
and any other field where maintenance activities take place particularly in third world
countries. / Thesis (M.Ing. (Development and Management Engineering))--North-West University, Potchefstroom Campus, 2011.
Identifer | oai:union.ndltd.org:NWUBOLOKA1/oai:dspace.nwu.ac.za:10394/6936 |
Date | January 2011 |
Creators | Oluwasina, Oluremi Isaac |
Publisher | North-West University |
Source Sets | North-West University |
Detected Language | English |
Type | Thesis |
Page generated in 0.0029 seconds