Maize streak virus (MSV) disease, transmitted by leafhoppers (Cicadulina mbila, Naude), and maize downy mildew (DM) disease caused by Peronosclerospora sorghi (Weston and Uppal) Shaw, are major contributing factors to low maize yields in Africa. These two diseases threaten maize production in Mozambique, thus the importance of breeding Mozambican maize varieties that carry resistance to these diseases. Marker-assisted selection (MAS) was employed to pyramid MSV and DM disease resistant genes into a single genetic background through simultaneous selection. Firstly, it was essential to determine the genetic diversity of MSV disease resistance in 25 elite maize inbred lines to aid in the selection of suitable lines for the introgression of the msv1 gene; and subsequently, to introduce the msv1 resistance gene cluster from two inbred lines, CM505 and CML509, which were identified as the ideal parental lines for the introgression of MSV disease resistance into a locally adapted Mozambican inbred line LP23 that had DM background resistance. Pyramiding the resistance genes by the use of simple sequence repeat (SSR) molecular markers to track the MSV gene cluster was investigated in 118 F3 progeny derived from crosses of CML505 x LP23 and CML509 x LP23. High resolution melt (HRM) analysis using the markers umc2228 and bnlg1811 detected 29 MSV resistant lines. At the International Maize and Wheat Improvement Centre (CIMMYT) in Zimbabwe, MSV disease expression of the 118 F3 progeny lines was assessed under artificial inoculation conditions with viruliferous leafhoppers and the effect of the MSV disease on plant height was measured. Thirty-seven family lines exhibited MSV and DM (DM incidence ≤50) disease resistance. Individual plants from a total of 41 progeny lines, that exhibited MSV disease severity ratings of 2.5 or less in both locations within each of the F3 family lines, were selected based on the presence of the msv1 gene based on SSR data, or field DM disease resistance, and were then advanced to the F4 generation to be fixed for use to improve maize hybrids in Mozambique for MSV resistance. Simultaneous trials were run at Chokwe Research Station in Mozambique for MSV and DM disease assessment, under natural and artificial disease infestation, respectively. Thus the MSV and DM genes were effectively pyramided. Lines with both MSV and DM resistance were advanced to the F4 generation and will be fixed for use to improve maize hybrids in Mozambique for MSV and DM resistance, which will have positive implications on food security in Mozambique. This research discusses the results of combined selection with both artificial inoculation and the three selected SSR markers. It was concluded that a conventional maize breeder can successfully use molecular markers to improve selection intensity and maximise genetic gain. / Thesis (M.Sc.Agric)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:ukzn/oai:http://researchspace.ukzn.ac.za:10413/10023 |
Date | January 2013 |
Creators | Mafu, Nothando Fowiza. |
Contributors | Laing, Mark D., Derera, John., Naidoo, Roobavathie. |
Source Sets | South African National ETD Portal |
Language | en_ZA |
Detected Language | English |
Type | Thesis |
Page generated in 0.0022 seconds