In this thesis, we attempt to obtain a class of generalized bilinear differential equations in (3+1)-dimensions by Dp-operators with p = 5, which have resonant solutions. We construct resonant solutions by using the linear superposition principle and parameterizations of wave numbers and frequencies. We test different values of p in Maple computations, and generate three classes of generalized bilinear differential equations and their resonant solutions when p = 5.
Identifer | oai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-7342 |
Date | 23 March 2016 |
Creators | Sun, Yue |
Publisher | Scholar Commons |
Source Sets | University of South Flordia |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Graduate Theses and Dissertations |
Rights | default |
Page generated in 0.0018 seconds