Return to search

Cyclotomic polynomials (in the parallel worlds of number theory)

Thesis (MSc)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: It is well known that the ring of integers Z and the ring of polynomials A = Fr[T] over a
finite field Fr have many properties in common. It is due to these properties that almost all
the famous (multiplicative) number theoretic results over Z have analogues over A. In this
thesis, we are devoted to utilising this analogy together with the theory of Carlitz modules.
We do this to survey and compare the analogues of cyclotomic polynomials, the size of their
coefficients and cyclotomic extensions over the rational function field k = Fr(T). / AFRIKAANSE OPSOMMING: Dit is bekend dat Z, die ring van heelgetalle en A = Fr[T], die ring van polinome oor ’n
eindige liggaam baie eienskappe in gemeen het. Dit is as gevolg van hierdie eienskappe dat
feitlik al die bekende multiplikative resultate wat vir Z geld, analoë in A het. In hierdie tesis,
fokus ons op die gebruik van hierdie analogie saam met die teorie van die Carlitz module.
Ons doen dit om ’n oorsig oor die analoë van die siklotomiese polinome, hul koëffisiënte, en
siklotomiese uitbreidings oor die rasionele funksie veld k = Fr(T).

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/17865
Date12 1900
CreatorsBamunoba, Alex Samuel
ContributorsBreuer, Florian, Stellenbosch University. Faculty of Science. Dept. of Mathematical Sciences.
PublisherStellenbosch : Stellenbosch University
Source SetsSouth African National ETD Portal
Languageen_ZA
Detected LanguageEnglish
TypeThesis
Format71 p. : ill.
RightsStellenbosch University

Page generated in 0.0023 seconds