Return to search

Endotoxins detection and control in drinking water systems

Endotoxins are a constituent of the lipopolysaccharide (LPS) complexes present in the outer layer of the cell wall of most Gram-negative bacteria and some cyanobacteria. The ingestion by a typical adult of amounts exceeding 1,000 endotoxin units (EUs) can cause fever, diarrhoea, vomiting, acute respiratory illnesses, and lung inflammation. In contrast, much smaller doses may lead to protective immunity against allergic diseases. / Endotoxins can be released in the air as well as in the water; previous studies have mainly focused on airborne endotoxins. Although many studies on endotoxins in raw and treated drinking waters have been performed, few have assessed seasonal variations and none have been conducted in Eastern Canada. Furthermore, a clear understanding of removal of endotoxins by various water treatment processes is still required. / Two methods to measure the concentrations of endotoxin were used and compared, the Limulus Amebocyte Lysate test (LAL) and the recombinant Factor C test (rFC). Raw water samples were taken from various drinking water sources around the Island of Montreal. The effects of free chlorine, UV radiation, and ozone were studied in batch experiments on filtered water samples via typical dosages and fluences used in drinking water treatment facilities. Residual concentrations for free chlorine were 0.8 and 1.6 mg/L; ozone doses were 0.5 and 1 mg/L; UV fluences were 40 and 100 mWs/cm2. Detention times of 20 and 60 minutes were tested for chlorine and 5 and 20 minutes for ozone. Grab sampling from three drinking water treatment plants in the Montreal area was performed during the months of June and late August/September 2006 and January 2007. Processes at these plants include coagulation and flocculation, sand filtration, ozonation and disinfection by chlorine. To test the variation in endotoxin concentrations during a sand filter cycle, samples were withdrawn directly from a filter in one of the treatment plants studied. The filtration cycle, from one backwash to the next one, lasts 72 h. Samples were collected immediately before the backwash, at the beginning and at the end of the ripening period, at the beginning of the filtration cycle and 48 h later, which corresponds to a half cycle period. / Of the two endotoxin detection methods used, LAL consistently gave slightly higher values compared to rFC; rFC also required more expensive hardware, but the method was less tedious and reagent costs were lower. Results presented, unless otherwise stated, were obtained with the rFC method. Endotoxin levels decreased in raw water samples between June and September. Concentrations ranged from 20 to 30 EU/mL in June, and decreased to 10 to 14 EU/mL in August and beyond. For the disinfection processes, the UV and free chlorine doses tested had little or no effect on the endotoxin concentrations, but ozone reduced the concentrations by up to 75%. Sand filtration and flocculation showed significant endotoxin removal efficiencies (50--60%). Levels remained around 5 EU/mL throughout the remaining treatment processes regardless of the influent concentration. Hence, endotoxin inactivation by free chlorine and UV does not occur with typical doses used in drinking water treatment plants; in contrast, flocculation and sand filtration, as well as ozonation, are much more effective.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.100231
Date January 2007
CreatorsParent Uribe, Santiago.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Engineering (Department of Civil Engineering and Applied Mechanics.)
Rights© Santiago Parent Uribe, 2007
Relationalephsysno: 002665940, proquestno: AAIMR38491, Theses scanned by UMI/ProQuest.

Page generated in 0.0019 seconds