M.Sc. / The world is focusing on increasing the number of people who have access to safe drinking water due to the ascending numbers of drinking water related illnesses reported annually in rural areas where water is not treated before consumption. To meet this goal, household water treatment has to be introduced especially in places where homes are wide apart making centralised water treatment improbable. Most readily available household water treatment systems (HWTS) such as membrane filters may not be affordable in rural areas due to power requirements and degree of ability to use and maintain them. This study was therefore aimed at designing and constructing HWTS using readily available material such as sand, gravel, zeolites and clays. Five HWTS were designed, built, evaluated and compared based on their ability to remove chemical contaminants such as iron, arsenic and fluorides from drinking water. The types of filters that were used during this study are the biosand filter (BSF), a modified biosand filter with zeolites (BSFZ), a silver impregnated porous pot (SIPP) filter, a ceramic candle filter (CCF) and a bucket filter (BF). Effectiveness of the filters in reducing physical parameters such as turbidity and visual colour was also assessed. The water treatment devices had the following flow rates; 1.74 L/h – 19.20 L/h (BSFZ), 0.81 L/h – 6.84 L/h (BSF), 0.05 L/h – 2.49 L/h (SIPP) and 1.00 L/h – 4.00 L/h (CCF). The flow rates were high at the early stages of filter use and decreased with increase in the volume of water filtered through. The flow rates of the filters were affected by the turbidity of intake water which was between 1.74 NTU – 42.93 NTU and correlated to chlorophyll a concentrations. The household water treatment technologies reduced turbidity to levels less than 1 NTU (> 90% reduction) in the following order SIPP > BSFZ > BSF > CCF > BF. The filters achieved greater than 60% retention of calcium, magnesium, iron and arsenic. These contaminants with the exception of arsenic were reduced to acceptable levels of the South African National Standard of drinking water (SANS 241, 2004). Compared to the other filters, the BSFZ performed better in removing nitrates, phosphates and fluorides although the overall retention efficiency was low. Total organic carbon was removed greatly by the CCF (39%) and the least removal was by the BF. The overall performance of the filters in reducing contaminants from drinking water was in the order BSFZ > BSF > SIPP > CCF > BF. Filter washing vi resulted in an overall increase in the flow rates of the filters but negatively affected turbidity reduction. The filters still removed contaminants after total cumulative volumes of 1200 L (BSFZ, BSF, CCF and BF) and 300 L (SIPP) were filtered through the devices. The five evaluated filters have several advantages to the readily available technologies and the advantages include ease of construction, operation and maintenance. The filters are gravity driven and work independent of temperature. These HWTS incorporate safe storages fitted with spigots to eliminate recontamination of water when it is drawn for use. The filters can produce enough drinking and cooking water for a family of six members due to their high flow rates. The BSFZ, BSF, SIPP, CCF and BF may therefore be considered for treating contaminated water at household scale in places where water is taken directly from the source without treatment.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:2859 |
Date | 20 August 2012 |
Creators | Mahlangu, Themba Oranso |
Source Sets | South African National ETD Portal |
Detected Language | English |
Type | Thesis |
Page generated in 0.0026 seconds