In this paper, the architecture and implementation of an embedded controller for a steering based semi-autonomous collision avoidance system on a 1/10th scale model is presented. In addition, the development of a 2D hardware-in-the-loop simulator with vehicle dynamics based on the bicycle model is described. The semi-autonomous collision avoidance software is fully contained onboard a single-board computer running embedded GNU/Linux. To eliminate any wired tethers that limit the system’s abilities, the driver operates the vehicle at a user-control-station through a wireless Bluetooth interface. The user-control-station is outfitted with a game-controller that provides standard steering wheel and pedal controls along with a television monitor equipped with a wireless video receiver in order to provide a real-time driver’s perspective video feed. The hardware-in-the-loop simulator was developed in order to aid in the evaluation and further development of the semi-autonomous collision avoidance algorithms. In addition, a post analysis tool was created to numerically and visually inspect the controller’s responses. The ultimate goal of this project was to create a wireless 1/10th scale collision avoidance research platform to facilitate human studies surrounding driver assistance and active safety systems in automobiles. This thesis is a continuation of work done by numerous Cal Poly undergraduate and graduate students.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-2646 |
Date | 01 December 2015 |
Creators | Stevens, Thomas F. |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0017 seconds