Vortex drop shafts are used to transport water or wastewater from over-stressed existing sewer systems to underground tunnels. During the plunge a large amount of air is entrained into the water and released downstream of the drop shaft into the tunnel. This air is unwanted and becomes costly to treat and move back to the surface. Determining the amount of air that will be entrained is a difficult task. A common method is to build a scale model and measure the air discharge and scale it back to prototype. This study investigated a possible relationship between the geometry of the drop structure, the water discharge and the amount of air entrained. The results have shown that air entrainment is still not entirely understood, however we are close to a solution. Using a relationship of the air core diameter, drop shaft length and terminal velocity of the water, a likely exponential relationship has been developed.
Identifer | oai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-2447 |
Date | 01 May 2011 |
Creators | Pump, Cody N. |
Contributors | Odgaard, A. Jacob |
Publisher | University of Iowa |
Source Sets | University of Iowa |
Language | English |
Detected Language | English |
Type | thesis |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | Copyright 2011 Cody N. Pump |
Page generated in 0.0016 seconds