Condensation of water vapor is an everyday phenomenon which plays an important role in power generation schemes, desalination applications and high-heat flux cooling of power electronic devices. Continuous dropwise condensation is a desirable mode of condensation in which small, highly-spherical droplets regularly form and shed off the surface before a thick liquid is formed, thereby minimizing the thermal resistance to heat transfer across the condensate layer. While difficult to induce and sustain, dropwise condensation has been shown to achieve heat and mass transfer coefficients over an order of magnitude higher than its filmwise counterpart. Superhydrophobic surfaces have been extensively studied to promote dropwise condensation with mixed results; often surfaces that are superhydrophobic to deposited droplets formed in the gas phase above the surface do not retain this behavior with condensed droplets nucleated and grown on the surface. Recently, nanostructured superhydrophobic surfaces have been developed that are robust to vapor condensation; however, these surfaces still are not ideal for condensation heat transfer due to the high thermal resistance of the vapor layer trapped underneath the droplets and the reduced footprint of direct contact between the highly-spherical droplets and the underlying substrate.
This work has two main objectives. First, a comprehensive free energy based thermodynamic model is developed to better understand why traditional superhydrophobic surfaces often lose their properties when exposed to condensed droplets. The model is first validated using data from the existing literature and then extended to analyze the suitability of amphiphilic (e.g. part hydrophobic and part hydrophilic) nanostructured surfaces for condensation applications. Secondly, one of the promising amphiphilic surfaces identified by the thermodynamic model is fabricated and tested to observe condensation dynamic behavior. Two complementary visualization techniques, environmental scanning electron microscopy (ESEM) and optical (light) microscopy, are used to probe the condensation behavior and compare the performance to that of a traditional superhydrophobic surface. Observations from the condensation experiments are used to propose a new mechanism of coalescence that governs the temporal droplet size distribution on the amphiphilic nanostructured surface and continually generates fresh sites for the droplet nucleation and growth cycle that is most efficient at heat transfer.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/47584 |
Date | 18 March 2013 |
Creators | Anderson, David Milton |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds