Return to search

Functional analysis of the Drosophila chk2 gene, loki : analysis of novel genetic interactors of Bic-D in Drosophila melanogaster

Cell cycle checkpoints are signal transduction pathways that control the order and timing of cell cycle transitions, ensuring that critical events are completed before the cell cycle proceeds. The Chk2 family of kinases plays a central role in mediating responses to DNA damage or DNA replication blocks in various organisms. My functional analysis of the Drosophila serine/threonine kinase Loki/Chk2 shows that fly chk2 monitors double-strand breaks caused by irradiation during S and G2 phases and induces cell cycle arrest in embryonic cells around cellularization. / loki is also required for the normal number of germ line cells to form in the embryo, and for normal modification of Vasa, a crucial factor in germ cell formation. However, during normal oogenesis loki expression is suppressed by orb. Another group described the involvement of Drosophila loki/chk2 in the meiotic pachytene checkpoint. Using our loki·null mutant, I obtained the opposite result: loki/chk2 does not have an essential function in this process. / The second part of my thesis deals with the question of how cells are instructed about their identity in a developing organism. (Abstract shortened by UMI.)

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.80329
Date January 2003
CreatorsMasrouha, Nisrine
ContributorsSuter, Beat (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Biology.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002090197, proquestno: AAIMQ98698, Theses scanned by UMI/ProQuest.

Page generated in 0.0017 seconds