The body encounters an innumerable amount of foreign substances, termed xenobiotics, which it must remove in order to prevent damage to cells and organs. This system of removal is a collection of processes known as ADME (absorption, distribution, metabolism, and excretion). The dynamics of ADME ultimately determine the fate, or pharmacokinetics, of a xenobiotic in the body whether it be an administered pharmaceutical or a potentially harmful toxicant. The major cellular effectors of ADME are the drug metabolizing enzymes (DMEs) and transporters. DMEs function to transform xenobiotics into a metabolite that is more suitable for excretion, whereas drug transporters serve a two-fold function. They may facilitate the uptake of the xenobiotic into the cell so that it can be acted upon by DMEs, or they may function to actively secrete xenobiotics and metabolites from the cell, encouraging their removal from the body. Any perturbations in the expression or function of these critical cellular effectors can result in the diminished therapeutic effect of a pharmaceutical via accelerated removal from the body, or increased toxicity of a pharmaceutical or toxicant due to retention in the body and increased exposure.Perturbations in the ADME processes may result in adverse drug reactions (ADRs) which are an unintended response to a pharmaceutical when administered at the recommended dose. In the last reporting year, the USFDA documented 471,291 serious ADRs causing hospitalization or permanent disabilities, of which 82,724 resulted in death. ADRs can be categorized as two types: dose-related ADRs, and those that are generally unpredictable and mostly occur in susceptible individuals. The major factors that make a person susceptible to ADRs are genetics and disease; however, genetics account for only a small proportion. This dissertation is focused on the contribution of an environmentally-derived component, particularly liver disease, to the occurrence of ADRs. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease of industrialized nations. It represents a spectrum of damage progressing to the severe stage of nonalcoholic steatohepatitis (NASH), and is closely related to obesity and type 2 diabetes. The following studies have determined the effect of NAFLD and NASH on DMEs and transporters, and demonstrated the propensity for NASH to result in serious ADRs.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/247281 |
Date | January 2012 |
Creators | Hardwick, Rhiannon Nicole |
Contributors | Cherrington, Nathan J., Gandolfi, A. Jay, Zhang, Donna D., Vaillancourt, Richard R., Sipes, I. Glenn, Cherrington, Nathan J. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Electronic Dissertation |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0025 seconds