Return to search

Novel cationic preparations of iscoms as vaccine carriers

Aim of thesis: Immuno-stimulating complexes (ISCOMs) are particulate vaccine delivery systems composed of Quillaja saponins, cholesterol and phospholipid. ISCOMs are typically spherical cage-like structures with a diameter of 40 nm and carry a negative charge. Incorporation of the respective vaccine antigen into the particles generates more potent vaccines than a simple mixture of both vaccine components. This requires the antigen to display either hydrophobic domains or positive charges, which allow interaction with the ISCOM particles. However, not all antigens fulfil this requirement and modification of these becomes necessary. Hence, the aim of this study was to design novel preparations of ISCOMs with a positive charge, suitable for adsorption of native hydrophilic antigens and poly-nucleotides, and test their potential as a novel vaccine carrier platform.
Methods: Two cationic lipids, DC-cholesterol and DOTAP, were selected to prepare the cationic modifications of ISCOMs. DC-cholesterol substituted for cholesterol in classical ISCOMs, whereas DOTAP substituted for their phospholipid component. The phase behaviour of colloidal systems containing Quil-A, phosphatidylcholine (PC) and DC-cholesterol and of colloidal systems comprised of Quil-A, cholesterol and DOTAP was studied by transmission electron microscopy (TEM). Lipid-film hydration was utilised as the first method to prepare these colloidal systems. Selected compositions containing either DC-cholesterol or DOTAP were also prepared by dialysis as second method. A novel third method for preparing homogenous dispersions of classical ISCOMs was developed utilising ethanol injection. This method was also applied in an attempt to prepare cationic modifications of ISCOMs including DC-cholesterol and DOTAP. As in the colloidal systems comprising Quil-A, PC and DC-cholesterol transformations of structures were observed upon dilution with aqueous solutions, these transitions were also studied on classical ISCOMs using TEM and dynamic light scattering techniques. Loading of cationic colloidal structures composed of Quil-A, PC and DC-cholesterol was performed with the model protein antigen ovalbumin (OVA) and a model plasmid, and the resulting structures were analysed by fluorescence spectroscopy, TEM and gel electrophoresis. The immunological properties of non-loaded and OVA-loaded structures were studied in terms of their ability to activate murine bone marrow derived dendritic cells (mBMDC) as antigen presenting cells (APC) and OVA-specific CD8+ T cells in vitro.
Results: Substitution of cholesterol in classical ISCOMs with DC-cholesterol resulted in the formation of cationic cage-like structures similar to the classical particles. These were observed in pseudo-ternary Quil-A:PC:DC-cholesterol systems and even in pseudo-binary Quil-A:DC-cholesterol systems prepared by lipid-film hydration. Compositions at which cage-like structures were observed included high weight proportions of DC-cholesterol (> 60%). However, samples were relatively heterogeneous, and aggregation of colloidal structures was observed at equimolar ratios of Quil-A and DC-cholesterol. The ionic strength, pH and composition of the hydration buffer were demonstrated to be important variables influencing the formation of cage-like structures. Morphological changes of pre-formed cationic cage-like structures were observed upon dilution. However, classical anionic ISCOMs showed a similar behaviour. The numbers of cationic cage-like structures appeared to increase upon prolonged storage of samples. Purification of structures and longitudinal analysis of their composition suggested an increased formation of stoichiometrically defined DC-cholesterol:Quil-A:PC complexes over time, rather than a change in composition. The substitution of phospholipid in classical ISCOMs with DOTAP also resulted in heterogeneous dispersions, and aggregation of colloidal structures was observed at equimolar ratios of Quil-A and DOTAP. Phase separation phenomena were proposed based on TEM observations. However, the formation of cage-like particles with a positive [zeta]-potential was not observed. Although ethanol injection was introduced as a novel method to prepare classical ISCOMs, its application did not result in more homogenous dispersions of cationic colloidal structures containing DC-cholesterol or DOTAP. Dialysis also failed to produce higher numbers of well-defined cationic particles, although using this method homogeneous, anionic ISCOM-like particles containing DOTAP were obtained. The efficient adsorption of OVA and plasmid DNA onto cationic structures containing Quil-A, PC and DC-cholesterol was demonstrated. The adsorption process was accompanied with a decrease in [zeta]-potential, aggregation of structures and changes in the ultra-structure, particularly at high protein:lipid ratios. The in vitro immunogenicity of dispersions containing Quil-A, PC and DC-cholesterol was equivalent to that of classical ISCOMs in terms of activation of mBMDC and OVA-specific CD8+ T cells, even though smaller amounts of Quillaja saponins and total lipid were co-delivered with OVA. Furthermore, the uptake of OVA by BMDC appeared to be more efficient in conjunction with the novel cationic dispersions.
Conclusions: Cationic colloidal structures containing Quillaja saponins offer great potential as vaccine delivery systems. Their advantages thus far include simple and efficient adsorption of antigen, efficient uptake by APC and immunological activity in vitro. With further development, cationic carriers containing Quillaja saponins may constitute a very potent vaccine delivery platform suitable for a variety of subunit antigens, and suffice both pharmaceutical and immunological requirements.

Identiferoai:union.ndltd.org:ADTP/217375
Date January 2006
CreatorsLendemans, Dirk G., n/a
PublisherUniversity of Otago. School of Pharmacy
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://policy01.otago.ac.nz/policies/FMPro?-db=policies.fm&-format=viewpolicy.html&-lay=viewpolicy&-sortfield=Title&Type=Academic&-recid=33025&-find), Copyright Dirk G. Lendemans

Page generated in 0.0019 seconds