Current dissolution apparatuses require several hundred milligrams of sample per trial, measure dissolution rate indirectly via concentration sampling, and cannot maintain sink conditions throughout the duration of a test. This work describes a novel dissolution testing methodology developed using a commercial quartz crystal microbalance (QCM) system to measure dissolution rates of drugs while overcoming the limitations of current dissolution methods. The apparatus was characterized for a sample drug system of benzoic acid dissolved using a dissolution medium of deionized water at flow rates of 1000, 100, 50, and 10 &mgr;L/min. Using an analysis method that combines the responses of resonance frequency and resistance of the quartz crystal during dissolution, the dissolution rate of benzoic acid was found to be 4.029 ± 0.743, 2.026 ± 0.913, 1.565 ± 0.349, and 1.060 ± 0.103 % mass/s, for each flow rate, respectively. The QCM dissolution apparatus method can be used to measure drug dissolution directly by quantifying mass loss (rather than indirectly via concentration changes as with current methods), reduce sample sizes compared with current methods by three orders of magnitude onto the microgram scale, and maintain sink conditions throughout the duration of the test.
Identifer | oai:union.ndltd.org:pacific.edu/oai:scholarlycommons.pacific.edu:uop_etds-1216 |
Date | 01 January 2015 |
Creators | Bonoan, Janpierre A. |
Publisher | Scholarly Commons |
Source Sets | University of the Pacific |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of the Pacific Theses and Dissertations |
Rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Page generated in 0.0123 seconds