Plants are able to take up and accumulate certain environmental contaminants such as heavy metals. When the plants are ingested by man, these contaminants are transferred along the food chain. Due to the poorly regulated medicinal plant trade in South Africa, many opportunities exist for heavy metal contamination of medicinal plants namely contaminated harvest sites as well as poor drying, processing, storage, transport and manufacturing conditions. The concentrations of five heavy metals (As, Cd, Co, Ni, Pb) and six microelements (B, Cu, Fe, Mn, Mo, Zn) were determined in some commonly used South African medicinal plants obtained from street markets. Elemental content was determined using inductively coupled plasma optical emission spectrophotometry (ICP-OES). Some of the medicinal plant samples investigated contained As and Cd at levels exceeding the World Health Organization limits of 1 and 0.3 mg kg-1 respectively. Lead and Ni were detected in all the samples. Elevated Fe and Mn levels were recorded in certain plant species. The results revealed multiple metal contamination in some medicinal plant parts sold in local markets and is thus grounds for concern. The effects of Cd application on growth parameters of some medicinal plant species belonging to the Hyacinthaceae (Albuca setosa, Eucomis autumnalis, Eucomis humilis, Merwilla plumbea) gave insight into heavy metal accumulation and distribution in these species. Application of Cd at 5 mg l-1 over a 12 week period reduced growth in A. setosa. The medicinally used A. setosa bulbs accumulated 37 mg kg-1 Cd after 12 weeks. Cadmium application at 2 mg l-1 over a six week period had no effect on growth parameters of E. autumnalis or E. humilis. However, a substantial difference in total Cd accumulation was detected in the plants (40.2 and 15.3 mg kg-1 respectively). Cadmium application at 2 mg l-1 significantly reduced the fresh weight of leaves, bulbs and roots of M. plumbea. Although most of the Cd was stored in the roots, the medicinally used bulbs accumulated up to 11.6 mg kg-1 when applied at 10 mg l-1. The antagonistic effect between Cd and Zn treatments and their effect on micronutrient distribution in M. plumbea were investigated. Five treatments were evaluated: (1) Hoagland’s nutrient solution (HS) (control) (2) HS + Cd 2 mg l-1 (single) (3) HS + Cd 2 mg l-1 + Zn 50 mg l-1 (combination) (4) HS + Cd 2 mg l-1 + Zn 100 mg l-1 (combination) (5) HS + Cd 2 mg l-1 + Zn 150 mg l-1 (combination). Cadmium readily accumulated in leaves, bulbs and roots of M. plumbea when supplied at 2 mg l-1. Zinc at 50 mg l-1 led to increased Cd accumulation. However, further increases in Zn concentration showed an antagonistic effect of Zn on Cd uptake and accumulation. Thus, increasing Zn levels in soils may be favourable for reducing toxic Cd accumulation in M. plumbea plants. Boron was not significantly affected by the addition of Cd to the media. However, with an increase in Zn, leaf B content increased while the B content in the bulbs and roots decreased. Copper and Mo levels were not significantly affected by treatments with Cd or Cd/Zn combinations. Compared to the control, Cd and Cd/Zn applications caused an increase in Mn content in leaves, bulbs and roots. Iron levels of M. plumbea were not significantly affected by Cd in the media. However, with an increase of Zn in the Cd-containing media, Fe content in the leaves, bulbs and roots increased. Tulbaghia violacea is one of the few medicinal plants that is also frequently used as a leafy vegetable. Application of Cd at 2 and 5 mg l-1 to T. violacea of varying sizes (small 8 - 10 g, medium 16 - 20 g, large 80 – 95 g) elicited a difference in growth response, Cd accumulation and micronutrient distribution. Leaf length and fresh weight of leaves of the medium-size plants decreased with application of Cd at 2 mg l-1 whilst 5 mg l-1 Cd significantly decreased the number of leaves in small-sized plants. Small plants accumulated more Cd in the leaves than medium- or large-sized plants. Application of Cd at 2 mg l-1 and 5 mg l-1 lowered the leaf Cu, Fe, Mo and Zn contents in small- and medium-size plants. This study indicated that T. violacea has the ability to accumulate Cd. In addition, plant size plays an important role with regards to Cd accumulation and elemental distribution. The effect of various nutrient applications (10%, 50% and 100% Hoagland’s nutrient solutions (HS); and HS deficient in N, P or K) on growth parameters and micronutrient distribution in Dioscorea dregeana were investigated. Irrigating plants with 50% HS resulted in better growth performance, whereas a deficiency of either N, P or K negatively affected seedling growth. Plants grown in 10% HS contained higher total B, Fe and Mo levels compared to seedlings grown in 50% and 100% HS. Compared to the control, P deficiency resulted in a Fe increase in the leaves, tuber and roots while a lack of P and K significantly increased total Mn content in D. dregeana. The effect of excess Zn (100, 200 and 300 mg l-1) on growth performance, chlorophyll content and microelemental distribution on Dioscorea sylvatica was investigated. Growth parameters showed a significant decrease when supplied with Zn at 100 mg l-1. Zinc phytotoxicity was evident by the reduction in chlorophyll content. Highest Zn concentrations were detected in the roots. Certain micronutrients appear to be redistributed due to Zn toxicity. The effect of microelements (Cu, Zn) and heavy metals (Cd, Pb, Hg) on germination and seedling development of Bowiea volubilis, Eucomis autumnalis and Merwilla plumbea was investigated. Copper and Zn applied at 1 mg l.1 significantly reduced the percentage germination of E. autumnalis. Low concentrations (. 1 mg l.1) of Cu and Zn negatively affected the root growth of all three species. Mercury concentrations of 0.5 and 1 mg l.1 significantly decreased the percentage germination of B. volubilis and E. autumnalis respectively. Cadmium and Hg at 2 mg l.1 showed a negative effect on the root growth of B. volubilis. Concentrations of 0.5 mg l.1 of all heavy metals tested significantly decreased shoot length of M. plumbea. The effect of Cd on biological activity (anti-inflammatory, antibacterial and antifungal) of medicinal plants with previously confirmed activity was evaluated. When supplied with Cd at 2 mg l-1, Eucomis humilis bulbous extracts showed lower anti-inflammatory activity than the control for both COX-1 and COX-2 activity. Eucomis autumnalis bulbous extracts had greater COX-1 activity compared to the control. However, Cd suppressed the activity of COX-2. Compared with non-Cd-treated Merwilla plumbea plants (control), those supplied with Cd at 10 mg l-1 showed increased antibacterial activity against Bacillus subtilis, Klebsiella pneumoniae and Staphylococcus aureus. However, no change in activity against Escherichia coli was observed. Cadmium accumulation in the bulbs had no effect on antifungal activity of Tulbaghia violacea. Thus, optimized agricultural practices are essential for quality control of cultivated medicinal plants. The studies presented in this thesis collectively answer several questions related to heavy metal involvement in South African medicinal plants. The findings substantiate the need to regulate and monitor the South African medicinal plant trade against heavy metal contamination which will in turn provide a product of safety and quality to the consumer. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:ukzn/oai:http://researchspace.ukzn.ac.za:10413/801 |
Date | January 2008 |
Creators | Street, Renée Anne. |
Contributors | Van Staden, Johannes., Stirk, Wendy A., Southway, Colin. |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0032 seconds