Return to search

Analysis of the effects of disease-associated variation within a cis-regulatory element of the CNR1 locus on CNR1 promoter dynamics

Genetic variation within the cannabinoid 1 receptor (CB1R) locus (CNR1) has been repeatedly associated with drug addiction pathologies. Genomic annotation of CNR1 indicates the vast majority of this genetic variation likely results in altered transcriptional regulation of the CNR1 gene as a mechanistic link to the disease phenotype. There is a lack of information describing the regulation of CNR1 transcription and the potential impact of disease-associated variation within the CNR1 locus on its transcriptional regulation. This study investigates the impact of an evolutionary conserved regulatory region of CNR1, termed ECR1, and the disease-associated variation contained within, on the transcriptional activity of the cognate CNR1 promoter region. Reporter assays conducted in primary hippocampal cells demonstrate that CNR1 promoter exhibits variable transcriptional activity during periods of CB1R signalling and cell depolarisation. Coupled to allelic variants of ECR1, the CNR1 promoter shows significant changes in transcriptional activity under resting conditions indicating that disease-associated variation within ECR1 may decrease CNR1 transcription. Further, alleles of ECR1 can drive allele-specific transcriptional responses from the CNR1 promoter during periods of CB1R stimulation and cell depolarisation. The results highlight the potential for disease-associated regulatory variation of the CNR1 locus to create stratified transcriptional responses to specific cell signalling scenarios and putatively to clinical strategies employing pharmacological agents. Furthermore, investigation of DNA-protein interactions at the allelic ECR1 region demonstrate that disease-associated variation within ECR1 alters DNA-protein interactions within the nucleus consistent with a decrease in transcriptional activity in the disease-associated allele variant. Collectively the current work supports the hypothesis that disease-associated variation within the ECR1 regulatory region of the CNR1 locus has the capacity to significantly impact on CNR1 promoter transcriptional activity. It is posited that allele-specific transcriptional effects may have a major impact on the susceptibility of individuals to drug addiction or on responses to clinical pharmacological treatments.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:641466
Date January 2014
CreatorsCowie, Philip David
PublisherUniversity of Aberdeen
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=225652

Page generated in 0.0022 seconds