Return to search

Antibiotics in the Diep River and potential abatement using grape slurry waste

Thesis (MTech (Chemistry))--Cape Peninsula University of Technology, 2017. / Pharmaceuticals have found extensive application in human health management. They are released into the environment through urine, excreta and inappropriate disposal methods. Residues of pharmaceutical products have been reported to show toxic consequences in some freshwater and marine organisms. Antibiotics are one of the most important groups of common human pharmaceuticals widely in use as prescribed and non-prescribed drugs. Antibiotics and their metabolites have been quantitated in water and found in trace levels. But even at such low concentrations they can maintain high biological activities with potential adverse effects on humans and animals. Unfortunately, many pharmaceutical compounds are resistant to breakdown in the environment, hence they have tendency for environmental magnification, since they are designed to be biologically active. Therefore, there is need to evaluate their environmental levels and their possible abatement methods using simple, cheap and low cost techniques, in order to avert their potential toxic consequences. In this research, a cost effective, robust, selective and rugged method for the analysis of antibiotics in water samples using liquid chromatography was developed, and used for monitoring levels of the selected antibiotics in Diep River. Also, an effective remediation procedure for these contaminants in water was developed using activated carbon produced from grape slurry waste.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:cput/oai:localhost:20.500.11838/2575
Date January 2017
CreatorsChitongo, Rumbidzai
ContributorsOpeolu, BO, Olatunji, OS, Opeolu, BO, Olatunji, OS
PublisherCape Peninsula University of Technology
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Rightshttp://creativecommons.org/licenses/by-nc-sa/3.0/za/

Page generated in 0.002 seconds