Return to search

Investigation into the cardiotoxic effects of doxorubicin and strategies for cardioprotection

Doxorubicin is one of the most effective anti-cancer agents; however its use is associated with adverse cardiac effects, including cardiomyopathy and progressive heart failure. Mitochondrial function and integrity are crucial for cellular processes in general and play an important role during diseased development. These characteristics of the mitochondria make them the prime target for treatments for majority of diseases and in particular of the cardiovascular system. The mitochondria are also considered to play an integral role in the manifestation of the cardiotoxic effects of compounds such as doxorubicin. The current project is designed to investigate the cardiotoxic effects of doxorubicin at tissue, cellular and protein level. In addition, it is investigated whether the inhibition of the mitochondrial permeability transition pore (mPTP) with cyclosporin A (CsA) or the inhibition of mitochondrial fission with the mitochondrial division inhibitor (mdivi-1) protects against the detrimental effects of doxorubicin on cardiac function. We also investigated whether co-treatment of doxorubicin with either CsA or mdivi-1 has any negative interaction with the cytotoxicity of doxorubicin against cancer cells. Langendorff results indicated that doxorubicin caused a time dependent reduction in the haemodynamic function of the heart as well as causing an increase in the infarct size to risk ratio in both naïve conditions and in conditions of ischaemia and reperfusion. Detrimental effects of doxorubicin on cardiac function were abrogated by co-treatment of doxorubicin with CsA or mdivi-1 in naïve conditions and in conditions of ischaemia and reperfusion. Cell viability data of isolated cardiac myocytes revealed that doxorubicin caused a concentration dependant decrease in the viability of neonatal cardiac myocytes as well as causing a reduction in the time taken to depolarisation and hypercontracture under sustained oxidative stress, all of which were prevented when co-treated with either CsA or mdivi-1. Doxorubicin significantly elevated the levels of p-Akt, p-Erk, p-Drp1 and p-p53. Co-treatment with CsA prevented the increase in the levels of p-Akt and p-Erk caused by doxorubicin in both naïve and IR condition whereas mdivi-1 prevented the increase in the levels of p-Erk, p-Drp1 and p-p53 and caused further increase in the levels of p-Akt. Using sinusoidal muscle length change during contraction and relaxation, it is demonstrated that doxorubicin caused a decrease in the power output, peak force and force during shorting. Detrimental effects of doxorubicin on work-loop contraction were abrogated when doxorubicin was co-administered with CsA. To conclude, results demonstrated that doxorubicin caused cardiotoxicity at tissue, cellular and protein level in both naïve conditions and in conditions of ischaemia and reperfusion injury. In addition, it is shown that the inhibition of mitochondrial permeability transition pore with CsA or the inhibition of the mitochondrial fission with mdivi-1 protect against doxorubicin-induced toxicity without affecting its anti-cancer properties.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:629992
Date January 2013
CreatorsGharanei, A. M.
PublisherCoventry University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://curve.coventry.ac.uk/open/items/ad712004-828e-4d9a-8ddb-17951146d414/1

Page generated in 0.0019 seconds